Downloads provided by UsageCounts
pmid: 37795097
pmc: PMC10546068
IntroductionTumor-associated macrophages may act to either limit or promote tumor growth, yet the molecular basis for either path is poorly characterized.MethodsWe use a larval Drosophila model that expresses a dominant-active version of the Ras-oncogene (RasV12) to study dysplastic growth during early tumor progression. We performed single-cell RNA-sequencing of macrophage-like hemocytes to characterize these cells in tumor- compared to wild-type larvae. Hemocytes included manually extracted tumor-associated- and circulating cells.Results and discussionWe identified five distinct hemocyte clusters. In addition to RasV12 larvae, we included a tumor model where the activation of effector caspases was inhibited, mimicking an apoptosis-resistant setting. Circulating hemocytes from both tumor models differ qualitatively from control wild-type cells—they display an enrichment for genes involved in cell division, which was confirmed using proliferation assays. Split analysis of the tumor models further reveals that proliferation is strongest in the caspase-deficient setting. Similarly, depending on the tumor model, hemocytes that attach to tumors activate different sets of immune effectors—antimicrobial peptides dominate the response against the tumor alone, while caspase inhibition induces a shift toward members of proteolytic cascades. Finally, we provide evidence for transcript transfer between hemocytes and possibly other tissues. Taken together, our data support the usefulness of Drosophila to study the response against tumors at the organismic level.
hemocyte, Tumor model, ScRNA-seq, Macrophages, Immunology, Hemocyte, RC581-607, tumor model, macrophages, Drosophila melanogaster, Neoplasms, Caspases, Tumor-Associated Macrophages, Animals, Drosophila Proteins, Drosophila, Immunologic diseases. Allergy, single-cell transcriptomics
hemocyte, Tumor model, ScRNA-seq, Macrophages, Immunology, Hemocyte, RC581-607, tumor model, macrophages, Drosophila melanogaster, Neoplasms, Caspases, Tumor-Associated Macrophages, Animals, Drosophila Proteins, Drosophila, Immunologic diseases. Allergy, single-cell transcriptomics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 14 | |
| downloads | 1 |

Views provided by UsageCounts
Downloads provided by UsageCounts