
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.7554/elife.86548 , 10.1101/2021.12.30.474585 , 10.5281/zenodo.7757458 , 10.5281/zenodo.7757457
pmid: 37139864
pmc: PMC10208636
doi: 10.7554/elife.86548 , 10.1101/2021.12.30.474585 , 10.5281/zenodo.7757458 , 10.5281/zenodo.7757457
pmid: 37139864
pmc: PMC10208636
Nested hippocampal oscillations in the rodent give rise to temporal dynamics that may underlie learning, memory, and decision making. Although theta/gamma coupling in rodent CA1 occurs during exploration and sharp-wave ripples emerge in quiescence, it is less clear that these oscillatory regimes extend to primates. We therefore sought to identify correspondences in frequency bands, nesting, and behavioral coupling of oscillations taken from macaque hippocampus. We found that, in contrast to rodent oscillations, theta and gamma frequency bands in macaque CA1 were segregated by behavioral states. In both stationary and freely moving designs, beta2/gamma (15–70 Hz) had greater power during visual search whereas the theta band (3–10 Hz; peak ~8 Hz) dominated during quiescence and early sleep. Moreover, theta-band amplitude was strongest when beta2/slow gamma (20–35 Hz) amplitude was weakest, instead occurring along with higher frequencies (60–150 Hz). Spike-field coherence was most frequently seen in these three bands (3–10 Hz, 20–35 Hz, and 60–150 Hz); however, the theta-band coherence was largely due to spurious coupling during sharp-wave ripples. Accordingly, no intrinsic theta spiking rhythmicity was apparent. These results support a role for beta2/slow gamma modulation in CA1 during active exploration in the primate that is decoupled from theta oscillations. The apparent difference to the rodent oscillatory canon calls for a shift in focus of frequency when considering the primate hippocampus.
QH301-705.5, hippocampus, Science, exploration, Hippocampus, Animals, Learning, Biology (General), Theta Rhythm, sleep, local field potential, visual search, Q, R, oscillation, sharp-wave ripple, wireless, theta, single unit, oscillations, Medicine, Macaca, gamma, monkey, neurophysiology, Neuroscience
QH301-705.5, hippocampus, Science, exploration, Hippocampus, Animals, Learning, Biology (General), Theta Rhythm, sleep, local field potential, visual search, Q, R, oscillation, sharp-wave ripple, wireless, theta, single unit, oscillations, Medicine, Macaca, gamma, monkey, neurophysiology, Neuroscience
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
views | 53 | |
downloads | 25 |