Downloads provided by UsageCounts
[Abstract] Mobile and autonomous robots are among the most critical technology applications requiring wireless connectivity with deterministic performance, including bounded latency with high reliability, even under congested network conditions. Emerging Wireless Time-Sensitive Networking (WTSN) capabilities over Wi-Fi and 5G can enable time synchronisation and bounded low latency through time-aware scheduling mechanisms. Such Wireless TSN capabilities have been demonstrated in several industrial/robotic use cases, but under static conditions. Mobility introduces new challenges due to the roaming events and associ- ated network outages owing to signaling between client devices and network infrastructure during these events. In this paper, we show how we can take advantage of the TSN redundancy capability (as defined in the IEEE 802.1CB standard) to eliminate outages or delays due to events like roaming and interference in a mobile robot use case enabled by Wi-Fi 6 TSN. We demonstrate the roaming performance with no delay impact on the applications though simulations of a mobile robot in a factory scenario and experimental results with a mobile robot connected via multiple Wi-Fi 6 radios in a warehouse environment.
reliability, PREDICT-6G, Horizon Europe, redundancy, WiFi, WTSN, SNS, 6G
reliability, PREDICT-6G, Horizon Europe, redundancy, WiFi, WTSN, SNS, 6G
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 36 | |
| downloads | 50 |

Views provided by UsageCounts
Downloads provided by UsageCounts