Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2021
License: CC BY NC ND
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2021
License: CC BY NC ND
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The North Australian Craton 3D Gravity and Magnetic Inversion Models - A trial for first pass modelling of the entire continent

Authors: Goodwin, James A; Lane, Richard J L;

The North Australian Craton 3D Gravity and Magnetic Inversion Models - A trial for first pass modelling of the entire continent

Abstract

As part of the Federal Government's Exploring for the Future program, whole-of-crust 3D gravity and magnetic inversion models have been produced for an area encompassing the North Australia Craton (NAC). These models were created to aid 3D geological mapping and identification of large-scale mineral systems such as iron oxide copper-gold (IOCG) systems. The inversion models were derived using the University of British Columbia - Geophysical Inversion Facility (UBC-GIF) MAG3D and GRAV3D programs. We used reference models that had layers for Phanerozoic sediments, Proterozoic sediments, undifferentiated crust and the mantle. The reference model for the magnetic inversion incorporated a Curie depth surface below which magnetic susceptibility was set to zero. To facilitate cross-referencing of the density and magnetic susceptibility models, we used identical meshes for the two inversions. The spacing of the available gravity data dictated a horizontal cell size of 1 km. We used 61 vertical layers of thickness increasing with depth. The area of interest was 2450 km by 1600 km, which meant that the mesh for the NAC models had ~240 million cells. It was not possible to invert a model of this size. Instead, we broke the problem down into a grid of overlapping 'tiles' with 8 rows and 10 columns. Each tile was independently inverted. When the overall model was reconstructed using the core region of each tile, some low-level edge effects were observed, increasing in significance with depth. These effects were satisfactorily attenuated by applying cosine weighting from the centre of each tile out to the edge of the data-padding zone during reconstruction. The success of the NAC modelling exercise has given us confidence that we can expand the coverage to produce coincident gravity and magnetic inversion models for the entire Australian region.

Open-Access Online Publication: March 01, 2023

Keywords

inversion, magnetics, North Australian Craton., gravity

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 11
    download downloads 16
  • 11
    views
    16
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
11
16
Green