Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Software . 2023
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Software . 2022
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Software . 2023
Data sources: Datacite
versions View all 3 versions
addClaim

rwightman/pytorch-image-models: v0.8.10dev0 Release

Authors: Wightman, Ross; Raw, Nathan; Soare, Alexander; Arora, Aman; Ha, Chris; Reich, Christoph; Guan, Fredo; +23 Authors

rwightman/pytorch-image-models: v0.8.10dev0 Release

Abstract

Feb 7, 2023 New inference benchmark numbers added in results folder. Add convnext LAION CLIP trained weights and initial set of in1k fine-tunes convnext_base.clip_laion2b_augreg_ft_in1k - 86.2% @ 256x256 convnext_base.clip_laiona_augreg_ft_in1k_384 - 86.5% @ 384x384 convnext_large_mlp.clip_laion2b_augreg_ft_in1k - 87.3% @ 256x256 convnext_large_mlp.clip_laion2b_augreg_ft_in1k_384 - 87.9% @ 384x384 Add DaViT models. Supports features_only=True. Adapted from https://github.com/dingmyu/davit by Fredo. Use a common NormMlpClassifierHead across MaxViT, ConvNeXt, DaViT Add EfficientFormer-V2 model, update EfficientFormer, and refactor LeViT (closely related architectures). Weights on HF hub. New EfficientFormer-V2 arch, significant refactor from original at (https://github.com/snap-research/EfficientFormer). Supports features_only=True. Minor updates to EfficientFormer. Refactor LeViT models to stages, add features_only=True support to new conv variants, weight remap required. Move ImageNet meta-data (synsets, indices) from /results to timm/data/_info. Add ImageNetInfo / DatasetInfo classes to provide labelling for various ImageNet classifier layouts in timm Update inference.py to use, try: python inference.py /folder/to/images --model convnext_small.in12k --label-type detail --topk 5 Ready for 0.8.10 pypi pre-release (final testing). Jan 20, 2023 Add two convnext 12k -> 1k fine-tunes at 384x384 convnext_tiny.in12k_ft_in1k_384 - 85.1 @ 384 convnext_small.in12k_ft_in1k_384 - 86.2 @ 384 Push all MaxxViT weights to HF hub, and add new ImageNet-12k -> 1k fine-tunes for rw base MaxViT and CoAtNet 1/2 models model top1 top5 samples / sec Params (M) GMAC Act (M) maxvit_xlarge_tf_512.in21k_ft_in1k 88.53 98.64 21.76 475.77 534.14 1413.22 maxvit_xlarge_tf_384.in21k_ft_in1k 88.32 98.54 42.53 475.32 292.78 668.76 maxvit_base_tf_512.in21k_ft_in1k 88.20 98.53 50.87 119.88 138.02 703.99 maxvit_large_tf_512.in21k_ft_in1k 88.04 98.40 36.42 212.33 244.75 942.15 maxvit_large_tf_384.in21k_ft_in1k 87.98 98.56 71.75 212.03 132.55 445.84 maxvit_base_tf_384.in21k_ft_in1k 87.92 98.54 104.71 119.65 73.80 332.90 maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k 87.81 98.37 106.55 116.14 70.97 318.95 maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k 87.47 98.37 149.49 116.09 72.98 213.74 coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k 87.39 98.31 160.80 73.88 47.69 209.43 maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k 86.89 98.02 375.86 116.14 23.15 92.64 maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k 86.64 98.02 501.03 116.09 24.20 62.77 maxvit_base_tf_512.in1k 86.60 97.92 50.75 119.88 138.02 703.99 coatnet_2_rw_224.sw_in12k_ft_in1k 86.57 97.89 631.88 73.87 15.09 49.22 maxvit_large_tf_512.in1k 86.52 97.88 36.04 212.33 244.75 942.15 coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k 86.49 97.90 620.58 73.88 15.18 54.78 maxvit_base_tf_384.in1k 86.29 97.80 101.09 119.65 73.80 332.90 maxvit_large_tf_384.in1k 86.23 97.69 70.56 212.03 132.55 445.84 maxvit_small_tf_512.in1k 86.10 97.76 88.63 69.13 67.26 383.77 maxvit_tiny_tf_512.in1k 85.67 97.58 144.25 31.05 33.49 257.59 maxvit_small_tf_384.in1k 85.54 97.46 188.35 69.02 35.87 183.65 maxvit_tiny_tf_384.in1k 85.11 97.38 293.46 30.98 17.53 123.42 maxvit_large_tf_224.in1k 84.93 96.97 247.71 211.79 43.68 127.35 coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k 84.90 96.96 1025.45 41.72 8.11 40.13 maxvit_base_tf_224.in1k 84.85 96.99 358.25 119.47 24.04 95.01 maxxvit_rmlp_small_rw_256.sw_in1k 84.63 97.06 575.53 66.01 14.67 58.38 coatnet_rmlp_2_rw_224.sw_in1k 84.61 96.74 625.81 73.88 15.18 54.78 maxvit_rmlp_small_rw_224.sw_in1k 84.49 96.76 693.82 64.90 10.75 49.30 maxvit_small_tf_224.in1k 84.43 96.83 647.96 68.93 11.66 53.17 maxvit_rmlp_tiny_rw_256.sw_in1k 84.23 96.78 807.21 29.15 6.77 46.92 coatnet_1_rw_224.sw_in1k 83.62 96.38 989.59 41.72 8.04 34.60 maxvit_tiny_rw_224.sw_in1k 83.50 96.50 1100.53 29.06 5.11 33.11 maxvit_tiny_tf_224.in1k 83.41 96.59 1004.94 30.92 5.60 35.78 coatnet_rmlp_1_rw_224.sw_in1k 83.36 96.45 1093.03 41.69 7.85 35.47 maxxvitv2_nano_rw_256.sw_in1k 83.11 96.33 1276.88 23.70 6.26 23.05 maxxvit_rmlp_nano_rw_256.sw_in1k 83.03 96.34 1341.24 16.78 4.37 26.05 maxvit_rmlp_nano_rw_256.sw_in1k 82.96 96.26 1283.24 15.50 4.47 31.92 maxvit_nano_rw_256.sw_in1k 82.93 96.23 1218.17 15.45 4.46 30.28 coatnet_bn_0_rw_224.sw_in1k 82.39 96.19 1600.14 27.44 4.67 22.04 coatnet_0_rw_224.sw_in1k 82.39 95.84 1831.21 27.44 4.43 18.73 coatnet_rmlp_nano_rw_224.sw_in1k 82.05 95.87 2109.09 15.15 2.62 20.34 coatnext_nano_rw_224.sw_in1k 81.95 95.92 2525.52 14.70 2.47 12.80 coatnet_nano_rw_224.sw_in1k 81.70 95.64 2344.52 15.14 2.41 15.41 maxvit_rmlp_pico_rw_256.sw_in1k 80.53 95.21 1594.71 7.52 1.85 24.86

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    180
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 498
    download downloads 20
  • 498
    views
    20
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
180
Top 0.1%
Top 1%
Top 0.1%
498
20