Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other ORP type . 2023
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other ORP type . 2023
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Checklist – Measurement and data planning for machine learning in assembly

Authors: Schnur, Christopher; Klein, Steffen; Blum, Anne;

Checklist – Measurement and data planning for machine learning in assembly

Abstract

Data quality plays a decisive role in fully exploiting the potential of artificial intelligence or machine learning in industry, especially in assembly. The checklist provided here is intended to support industrial users, especially in medium-sized companies, in acquiring high-quality data to minimize the effort required for data analysis and increase the meaningfulness of the results. It supports the planning of a project to use machine learning at an existing assembly plant (brownfield). Therefore, the focus is not on acquiring a new plant or data planning for prototypes in product development. Nevertheless, the checklist can also provide guidance in these use cases. It follows the approach of recording valid data as precisely as possible by contributing expert knowledge and making it available clearly. Due to the high diversity of available machine learning methods, data analysis is only covered at a basic level within the scope of this document. The primary target groups of this checklist are manufacturing SMEs and large companies. This checklist is also available in German on the link https://zenodo.org/record/6943476#.Y8-jiXbMJD8.

Developed as part of a cooperation between the Lab for Measurement Technology and the Chair of Assembly Systems within the framework of the ERDF project "Messtechnisch gestützte Montage" and the follow-up project" "iTecPro – Erforschung und Entwicklung von innovativen Prozessen und Technologien für die Produktion der Zukunft". Future development is carried out in the project "NFDI4Ing – the National Research Data Infrastructure for Engineering Sciences", funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 442146713

Related Organizations
Keywords

Machine Learning, Assembly, Data Quality, Checklist

1 Data sources, page 1 of 1
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 33
    download downloads 28
  • 33
    views
    28
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
33
28