
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
This paper presents an analysis of the Low-Complexity Acoustic Scene Classification task in DCASE 2022 Challenge. The task was a continuation from the previous years, but the low-complexity requirements were changed to the following: the maximum number of allowed parameters, including the zero-valued ones, was 128 K, with parameters being represented using INT8 numerical for- mat; and the maximum number of multiply-accumulate operations at inference time was 30 million. Despite using the same previous year dataset, the audio samples have been shortened to 1 second instead of 10 second for this year challenge. The provided baseline system is a convolutional neural network which employs post-training quantization of parameters, resulting in 46.5 K parameters, and 29.23 million multiply-and-accumulate operations (MMACs). Its performance on the evaluation data is 44.2% accuracy and 1.532 log-loss. In comparison, the top system in the challenge obtained an accuracy of 59.6% and a log loss of 1.091, having 121 K parameters and 28 MMACs. The task received 48 submissions from 19 different teams, most of which outperformed the baseline system.
Audio and Speech Processing (eess.AS), 213 Electronic, automation and communications engineering, electronics, Acoustic scene classification, FOS: Electrical engineering, electronic engineering, information engineering, low-complexity, DCASE Challenge, Electrical Engineering and Systems Science - Audio and Speech Processing
Audio and Speech Processing (eess.AS), 213 Electronic, automation and communications engineering, electronics, Acoustic scene classification, FOS: Electrical engineering, electronic engineering, information engineering, low-complexity, DCASE Challenge, Electrical Engineering and Systems Science - Audio and Speech Processing
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
views | 2 | |
downloads | 6 |