
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Abstract Powdery mildew of cucurbits, caused by Podosphaera xanthii, is an economic constraint in cucurbit production worldwide. This study examined the influence of temperature and vapour pressure deficit (VPD) on the rate of conidial germination and the formation of germ tubes in an Australian P. xanthii isolate 12 – 48 h after inoculation. Two experiments were prepared by inoculating cucumber, cv. crystal salad, leaf-discs using a spore settling tower. The first experiment incubated inoculated cucumber leaf-discs at eight temperatures between 8 and 35 °C under saturated vapour pressure (SVP), the second compared 18 VPD conditions between 0.038 and 1.797 kPa, in six humidity chambers (33% – 99% relative humidity) and three temperatures (22 °C, 25 °C, 28 °C). Leaf-discs were cleared, stained and microscopically inspected for conidial germination and the number of germ tubes. The optimal temperature for germination was 28ºC at SVP, where more than 50% of conidia had germinated by 12 h, and 85% by 48 h. Fewer germinated conidia were recorded after 12 h at other temperature treatments between 17 °C and 31 °C. The germination percentage and germination rate were significantly lower when vapour pressure was between 0.13 and 2.5 kPa, with germination in response to VPD varying by approximately 10%, indicating difficulty associating conidial germination to VPD above 0.13 kPa. Germ tube production was highest between 25 ºC and 28 ºC at the lowest VPD treatment at near SVP, with more than 50% of the germinated conidia producing at least three germ tubes. Germination and formation of germ tubes significantly reduced when VPD increased. P. xanthii conidia were able to produce a primary germ tube under relatively dry conditions, such as 2.53 kPa, but these results show infection would be less likely and require longer incubation. This study provides the first crucial step in simulating powdery mildew infections on cucurbit plants and may lead to a model capable of providing risk forecasts or fungicide management decision support tools.
cucurbit, powdery mildew, Podosphaera xanthii, conidial germination, germ tube formation, vapour pressure deficit, temperature, disease risk modelling.
cucurbit, powdery mildew, Podosphaera xanthii, conidial germination, germ tube formation, vapour pressure deficit, temperature, disease risk modelling.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
views | 2 | |
downloads | 7 |