Downloads provided by UsageCounts
The dataset was created for studying estimation of strong labels using crowdsourcing. It contains 49 real-life audio files from 5 different acoustic scenes, and the annotation outcome. Annotation was performed using Amazon Mechanical Turk. Total duration of the dataset is 189 minutes and 52 seconds Audio files are a subset from TUT Acoustic Scenes 2016 dataset, belonging to five acoustic scenes: cafe/restaurant, city center, grocery store, metro station and residential area. Each scene have 6 classes, some of them are common to all the scenes, resulting into 17 classes in total. The dataset contains: audio: the 49 real-life recordings, each from 3 to 5 min long. soft labels: estimated strong labels from the crowdsourced data, values between 0 and 1 indicates the uncertainty of the annotators. For more details about the real-life recordings, please see the following paper: A. Mesaros, T. Heittola and T. Virtanen, "TUT database for acoustic scene classification and sound event detection," 2016 24th European Signal Processing Conference (EUSIPCO), 2016, pp. 1128-1132.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 200 | |
| downloads | 166 |

Views provided by UsageCounts
Downloads provided by UsageCounts