Downloads provided by UsageCounts
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Abstract Objective. To propose a novel moment-based loss function for predicting 3D dose distribution for the challenging conventional lung intensity modulated radiation therapy plans. The moment-based loss function is convex and differentiable and can easily incorporate clinical dose volume histogram (DVH) domain knowledge in any deep learning (DL) framework without computational overhead. Approach. We used a large dataset of 360 (240 for training, 50 for validation and 70 for testing) conventional lung patients with 2 Gy × 30 fractions to train the DL model using clinically treated plans at our institution. We trained a UNet like convolutional neural network architecture using computed tomography, planning target volume and organ-at-risk contours as input to infer corresponding voxel-wise 3D dose distribution. We evaluated three different loss functions: (1) the popular mean absolute error (MAE) loss, (2) the recently developed MAE + DVH loss, and (3) the proposed MAE + moments loss. The quality of the predictions was compared using different DVH metrics as well as dose-score and DVH-score, recently introduced by the AAPM knowledge-based planning grand challenge. Main results. Model with (MAE + moment) loss function outperformed the model with MAE loss by significantly improving the DVH-score (11%, p < 0.01) while having similar computational cost. It also outperformed the model trained with (MAE + DVH) by significantly improving the computational cost (48%) and the DVH-score (8%, p < 0.01). Significance. DVH metrics are widely accepted evaluation criteria in the clinic. However, incorporating them into the 3D dose prediction model is challenging due to their non-convexity and non-differentiability. Moments provide a mathematically rigorous and computationally efficient way to incorporate DVH information in any DL architecture. The code, pretrained models, docker container, and Google Colab project along with a sample dataset are available on our DoseRTX GitHub (https://github.com/nadeemlab/DoseRTX)
Organs at Risk, FOS: Computer and information sciences, Radiotherapy, Radiotherapy Planning, Computer-Assisted, Computer Vision and Pattern Recognition (cs.CV), Domain knowledge driven, Computer Science - Computer Vision and Pattern Recognition, Radiotherapy Dosage, Deep learning, Dose prediction, Humans, Neural Networks, Computer, Radiotherapy, Intensity-Modulated, Radiation treatment planning
Organs at Risk, FOS: Computer and information sciences, Radiotherapy, Radiotherapy Planning, Computer-Assisted, Computer Vision and Pattern Recognition (cs.CV), Domain knowledge driven, Computer Science - Computer Vision and Pattern Recognition, Radiotherapy Dosage, Deep learning, Dose prediction, Humans, Neural Networks, Computer, Radiotherapy, Intensity-Modulated, Radiation treatment planning
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 57 | |
| downloads | 88 |

Views provided by UsageCounts
Downloads provided by UsageCounts