Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Thesis . 2022
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Thesis . 2022
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

Machine Learning for Probabilistic Prediction

Authors: Manokhin, Valery;

Machine Learning for Probabilistic Prediction

Abstract

Prediction is the key objective of many machine learning applications. Accurate, reliable and robust predictions are essential for optimal and fair decisions by downstream components of artificial intelligence systems, especially in high-stakes applications, such as personalised health, self-driving cars, finance, new drug development, forecasting of election outcomes and pandemics. Many modern machine learning algorithms output overconfident predictions, resulting in incorrect decisions and technology acceptance issues. Classical calibration methods rely on artificial assumptions and often result in overfitting, whilst modern calibration methods attempt to solve calibration issues by modifying components of black-box deep learning systems. While this provides a partial solution, such modifications do not provide mathematical guarantees of prediction validity and are intrusive, complex, and costly to implement. This thesis introduces novel methods for producing well-calibrated probabilistic predictions for machine learning classification and regression problems. A new method for multi-class classification problems is developed and compared to traditional calibration approaches. In the regression setting, the thesis develops novel methods for probabilistic regression to derive predictive distribution functions that are valid under a nonparametric IID assumption in terms of guaranteed coverage and contain more information when compared to classical conformal prediction methods whilst improving computational efficiency. Experimental studies of the methods introduced in this thesis demonstrate advantages with regard to state-of-the-art. The main advantage of split conformal predictive systems is their guaranteed validity, whilst cross-conformal predictive systems enjoy higher predictive efficiency and empirical validity in the absence of excess randomisation.

Related Organizations
Keywords

conformal prediction, uncertainty quantification, classification, regression, machine learning, Bayesian, deep learning

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 230
    download downloads 205
  • 230
    views
    205
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
230
205
Green