
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Cuticular hydrocarbons (CHCs) serve two fundamental functions in insects: protection against desiccation and chemical signaling. How the interaction of genes shapes CHC profiles, which are essential for insect survival, adaptation, and reproductive success, is still poorly understood. Here we investigate the genetic and genomic basis of CHC biosynthesis and variation in parasitoid wasps of the genus Nasonia. We mapped 91 quantitative trait loci (QTL) explaining variation of a total of 43 CHCs in F2 hybrid males from interspecific crosses between three Nasonia species. To identify candidate genes, we localized orthologs of CHC biosynthesis-related genes in the Nasonia genomes. We discovered multiple genomic regions where the location of QTL coincides with the location of CHC biosynthesis-related candidate genes. Most conspicuously, on a region on chromosome 1 close to the centromere, multiple CHC biosynthesis-related candidate genes co-localize with several QTL explaining variation in methyl-branched alkanes. The genetic underpinnings behind this compound class are not well understood so far, despite their high potential for encoding chemical information as well as their prevalence in hymenopteran CHC profiles. Our study considerably extends our knowledge on the genetic architecture governing this fundamental compound class, establishing a model for methyl-branched alkane genetics in the Hymenoptera in general.
Funding provided by: Deutsche ForschungsgemeinschaftCrossref Funder Registry ID: http://dx.doi.org/10.13039/501100001659Award Number: 427879779
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
views | 4 | |
downloads | 3 |