Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2022
License: CC BY
Data sources: Datacite
ZENODO
Dataset . 2024
License: CC BY
Data sources: Datacite
ZENODO
Dataset . 2024
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

AIT Netflow Data Set

Authors: Soro, Francesca; Landauer, Max; Skopik, Florian; Hotwagner, Wolfgang; Wurzenberger, Markus;

AIT Netflow Data Set

Abstract

AIT Netflow Data Sets This repository contains labeled synthetic netflows suitable for evaluation of intrusion detection systems, federated learning, and alert aggregation. The netflows are generated from the packet captures contained in the AIT-LDS-v2.0. A detailed description of that dataset is available in [1]. The packet captures were collected from eight testbeds that were built at the Austrian Institute of Technology (AIT) following the approach by [2]. Please cite these papers if the data is used for academic publications. In brief, each of the datasets corresponds to a testbed representing a small enterprise network including mail server, file share, WordPress server, VPN, firewall, etc. Normal user behavior is simulated to generate background noise over a time span of 4-6 days. At some point, a sequence of attack steps is launched against the network. The following attacks are launched in the network: Scans (nmap, WPScan, dirb) Webshell upload (CVE-2020-24186) Password cracking (John the Ripper) Privilege escalation Remote command execution Data exfiltration (DNSteal) This repository contains the following files: _netflows.zip: CSV files of labeled TCP and UDP netflows for each testbed. label_info.txt: File describing which labels in TCP and UDP are benign and which ones are malicious. README.md: Instructions on how to reproduce the generation and labeling of the netflows from the AIT-LDS-v2.0. Note that it is only necessary to run the python scripts if you want to extend or change the labeling procedure. 1_format_dataset_info.ipynb: Generates the tables necessary for labeling (see README.md). 2_label_logs.ipynb: Labels the netflows (see README.md). Acknowledgements: Partially funded by the FFG projects INDICAETING (868306) and DECEPT (873980), and the EU projects GUARD (833456) and PANDORA (SI2.835928). If you use the dataset, please cite the following publications: [1] M. Landauer, F. Skopik, M. Frank, W. Hotwagner, M. Wurzenberger, and A. Rauber. "Maintainable Log Datasets for Evaluation of Intrusion Detection Systems". IEEE Transactions on Dependable and Secure Computing, vol. 20, no. 4, pp. 3466-3482. [PDF] [2] M. Landauer, F. Skopik, M. Wurzenberger, W. Hotwagner and A. Rauber, "Have it Your Way: Generating Customized Log Datasets With a Model-Driven Simulation Testbed," in IEEE Transactions on Reliability, vol. 70, no. 1, pp. 402-415, March 2021, doi: 10.1109/TR.2020.3031317. [PDF]

M. Landauer, F. Skopik, M. Frank, W. Hotwagner, M. Wurzenberger, and A. Rauber. "Maintainable Log Datasets for Evaluation of Intrusion Detection Systems". IEEE Transactions on Dependable and Secure Computing, vol. 20, no. 4, pp. 3466-3482.

Related Organizations
Keywords

intrusion detection, netflows

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 328
    download downloads 216
  • 328
    views
    216
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
328
216
Funded by