Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2022
License: CC BY NC
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2022
License: CC BY NC
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A TripAdvisor Dataset for Dyadic Context Analysis

Authors: López-Riobóo Botana, Iñigo Luis; Bolón-Canedo, Verónica; Guijarro-Berdiñas, Bertha; Alonso-Betanzos, Amparo;

A TripAdvisor Dataset for Dyadic Context Analysis

Abstract

There are many contexts where dyadic data are present. In social networks, users are linked to a variety of items, defining interactions. In the social platform of TripAdvisor, users are linked to restaurants by means of reviews posted by them. Using the information of these interactions, we can get valuable insights for forecasting, proposing tasks related to recommender systems, sentiment analysis, text-based personalisation or text summarisation, among others. Furthermore, in the context of TripAdvisor there is a scarcity of public datasets and lack of well-known benchmarks for model assessment. We present six new TripAdvisor datasets from the restaurants of six different cities: London, New York, New Delhi, Paris, Barcelona and Madrid. If you use this data, please cite the following paper under submission process (preprint - arXiv) We exclusively collected the reviews written in English from the restaurants of each city. The tabular data is comprised of a set of six different CSV files, containing numerical, categorical and text features: parse_count: numerical (integer), corresponding number of extracted review by the web scraper (auto-incremental) author_id: categorical (string), univocal, incremental and anonymous identifier of the user (UID_XXXXXXXXXX) restaurant_name: categorical (string), name of the restaurant matching the review rating_review: numerical (integer), review score in the range 1-5 sample: categorical (string), indicating “positive” sample for scores 4-5 and “negative” for scores 1-3 review_id: categorical (string), univocal and internal identifier of the review (review_XXXXXXXXX) title_review: text, review title review_preview: text, preview of the review, truncated in the website when the text is very long review_full: text, complete review date: timestamp, publication date of the review in the format (day, month, year) city: categorical (string), city of the restaurant which the review was written for url_restaurant: text, restaurant url

This research has been financially supported in part by the Spanish Government [grant number PID2019-109238GB-C22]; by the Xunta de Galicia [grant number ED431G 2019/01 - Research Center on Information and Communication Technologies (CITIC)]; and by European Union ERDF Funds. Special recognition goes to the Spanish Ministerio de Universidades for the predoctoral FPU funds [grant number FPU19/01457]. Please notice that these data is under a CC-BY-NC 4.0 International license. You must NOT use the material for commercial purposes. For the data collection, we designed our own web scraper, selecting a mix of Scrapy python framework and Selenium web driver testing tool. Participants data have been anonymized. We added the field "author_id" as the incremental, univocal and anonymous identifier of each user (UID_XXXXXXXXXX).

Keywords

Dyadic data, Restaurants, Text mining, TripAdvisor, Sentiment Analysis, Reviews, Natural Language Processing

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 98
    download downloads 39
  • 98
    views
    39
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
98
39
Related to Research communities