Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Padua research Archi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neurophotonics
Article . 2022 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2022
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2022
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
UCL Discovery
Article . 2022
Data sources: UCL Discovery
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neurophotonics
Article
Data sources: Sygma
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL AMU
Article . 2022
Data sources: HAL AMU
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 16 versions
addClaim

Neurophotonic Tools for Microscopic Measurements and Manipulation: Status Report

Authors: Abdelfattah; Ahuja; Akkin; Allu; Boas; Brake; Buckley; +64 Authors

Neurophotonic Tools for Microscopic Measurements and Manipulation: Status Report

Abstract

This report was edited by Anna Devor and Darcy Peterka. Cover design by Kıvılcım Kılıç. A.D. was supported by the U.S. National Institutes of Health (NIH) grants R01MH111359, R01DA050159, and U19NS123717. A.N. was supported by NIH grants R01NS108034, U19NS112959, and U19NS123719. D.A.B. was supported by NIH grant R01NS108472. M.G.H. is currently the ERANet Chair (NCBio) at i3S Porto funded by the European Commission (H2020-WIDESPREAD-2018-2020-6; NCBio; 951923). R.A.S. is a Wellcome Principal Research Fellow (203048, 224499) and his microscopy development is co-funded by the NIH Brain initiative (U01NS113273). Fi.P., and Fe.P. acknowledge funding from the European Research Council under the European Union's Horizon 2020 Research and Innovation Program under Grant Agreement No. 677683. M.D.V. and Fe.P. acknowledge funding from the European Union's Horizon 2020 Research and Innovation Program under Grant Agreement No. 828972. Fi.P., M.D.V., Fe.P, O.Y., V.E., and T.C. acknowledge that this project has received funding from the European Union's Horizon 2020 Research and Innovation Program under Grant Agreement No. 101016787. Fe.P., B.L.S., and M.D.V. were funded by NIH Grant No. 1UF1NS108177-01. O.Y. and V. E. were supported by H2020-RIA (DEEPER 101016787) and the ERC (PrefrontalMap 819496). L.V.W. acknowledges funding support by NIH grants R01 NS102213, U01 NS099717, and U01 EB029823. S.L.S. was supported by NIH grants R01NS091335, R01NS121919 and National Science Foundation (NSF) grant 1934288. R.E.C, and Y.N. were supported by Japan Society for the Promotion of Science (JSPS) KAKENHI grant 19H05633. V.J.S. was supported by NIH grants NS094681, EB029747, and EY031469. S.N.S. acknowledges funding from the NIH Ruth L. Kirschstein National Research Service Award (F31 NS115421). P.R.D. acknowledges funding from the NIH Ruth L. Kirschstein National Research Service Award (F31 NS118949). T.A. and T.L. acknowledge funding from the University of Minnesota Medical School (AIRP) and the National Ataxia Foundation. F.V. was supported by NIH grants R01NS117756 and R01NS121219. U.H. was supported by NIH Brain Initiative grants R01NS120832, U01NS099709, and NSF NeuroNex Technology Hub 1707352. G.Y. was supported by NIH grants R01 GM124038 and R01 NS102586. L. T. was funded by NIH grant R21EY030016. I.C. was supported by European Union's Horizon 2020 Research and Innovation Framework Program under Grant Agreement No. 654148 (Laserlab-Europe); European Union's Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreement No. 785907 (Human Brain Project SGA2) and No. 945539 (Human Brain Project SGA3); General Hospital Corporation Center of the NIH under Award No. U01 MH117023; Italian Ministry for Education in the framework of Euro-Bioimaging Italian Node (ESFRI research infrastructure); "Fondazione CR Firenze" (private foundation). T. Č., H. U., and P. O. were supported by the European Union's H2020-RIA (DEEPER, Grant Agreement No. 101016787), European Research Council (724530), and MEYS (CZ.02.1.01/ 0.0/ 0.0/ 15_003/0000476). S.S. was supported by NIH grants U19NS107464, R01NS109885 and UF1NS107680. V.E and R.S were supported by the European Research Council (ERC-2019-AdG 885090, HOLOVIS). N.J. was supported by NIH grant U01NS118300. A.V. was supported by the National Institute of Neurological Disorders and Stroke of the NIH under Award Nos. 5U01NS103488, 1RF1NS113251, and 1RF1NS110501, and the Kavli Foundation. D. S. P. was supported by NIH grants 5U19NS104649, 5U01NS113273, 9R44MH117430. Y. Z. was supported by NIH Director's New Innovator Award DP2 OD025926-01 and the Kaufman Foundation. A. S. A holds a Career Award at the Scientific Interface from Burroughs Wellcome Fund and acknowledges funding from the Searle Scholar Program and NIH New innovator award 1DP2MH129956. E. M. R. L. was supported by NIH grants R01MH111424 and U01NS094358. E. W. M. acknowledges support from NIH (R01NS098088) and NSF (NeuroNex 1707350).

Neurophotonics was launched in 2014 coinciding with the launch of the BRAIN Initiative focused on development of technologies for advancement of neuroscience. For the last seven years, Neurophotonics’ agenda has been well aligned with this focus on neurotechnologies featuring new optical methods and tools applicable to brain studies. While the BRAIN Initiative 2.0 is pivoting towards applications of these novel tools in the quest to understand the brain, in this article we review an extensive and diverse toolkit of novel methods to explore brain function that have emerged from the BRAIN Initiative and related large-scale efforts for measurement and manipulation of brain structure and function. Here, we focus on neurophotonic tools mostly applicable to animal studies. A companion article, scheduled to appear later this year, will cover diffuse optical imaging methods applicable to noninvasive human studies. For each domain, we outline the current state-of-the-art of the respective technologies, identify the areas where innovation is needed and provide an outlook for the future directions.

Countries
Portugal, Italy, United Kingdom, Italy, France, Italy, United States, United States
Keywords

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics], Medical Biotechnology, Neuroscience (miscellaneous), Biomedical Engineering, molecular sensors, 610, Bioengineering, blood flow; fluorescence; label free; molecular sensors; multimodal; optical imaging; optogenetics, Nuclear Medicine and imaging, label free, Fluorescence, Optical imaging, optical imaging, Engineering, Neurophotonic Tools for Microscopic Measurements and Manipulation, blood flow, [SDV.NEU] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC], optogenetics, Radiological and Ultrasound Technology, Biomedical and Clinical Sciences, Neurosciences, multimodal, 600, Blood flow, Molecular sensors, Optogenetics, blood flow, fluorescence, label free, molecular sensors, multimodal, optical imaging, optogenetics, Mental Health, Neurological, Multimodal, Biomedical Imaging, fluorescence, Radiology, Biomedical engineering, Label free

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 11
    download downloads 35
  • 11
    views
    35
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
26
Top 10%
Top 10%
Top 10%
11
35
Green
gold