Views provided by UsageCounts
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>While fluid-structure interaction (FSI) problems are ubiquitous in various applications from cell-biology to aerodynamics, they involve huge computational overhead. In this paper, we adopt a machine learning (ML)-based strategy to bypass the detailed FSI analysis that requires cumbersome simulations in solving the Navier-Stokes (N-S) equations. To mimic the effect of fluid on an immersed beam, we have introduced dissipation into the beam model with time-varying forces acting on it. The forces in a discretized setup have been decoupled via an appropriate linear algebraic operation, which generates the ground truth force/moment data for the ML analysis. The adopted ML technique, symbolic regression, generates computationally tractable functional forms to represent the force/moment with respect to space and time. These estimates are fed into the dissipative beam model to generate the immersed beam's deflections over time, which are in conformity with the detailed FSI solutions. Numerical results demonstrate that the ML-estimated continuous force and moment functions are able to accurately predict the beam deflections under different discretizations.
Note: For further understanding of the above flow, please refer to Figure 2 of the manuscript: "Capturing functional relations in fluid-structure interactionvia machine learning". Note: We have uploaded the IB2D code for completeness. However, IB2D is an opensource code which is avilable via the following link :"https://github.com/nickabattista/IB2d".Funding provided by: Accelerated Materials Development for Manufacturing Program at A*STAR via the AME Programmatic Fund by the Agency for Science, Technology and Research*Crossref Funder Registry ID: Award Number: Grant No. A1898b0043
Fluid structure interaction, Finite Element Method, symbolic regression
Fluid structure interaction, Finite Element Method, symbolic regression
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 4 |

Views provided by UsageCounts