Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Software . 2022
Data sources: Datacite
ZENODO
Software . 2022
Data sources: ZENODO
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multi-lens Neural Machine (MLNM)

Authors: Oner, Mustafa Umit; Ng, Mei Ying;

Multi-lens Neural Machine (MLNM)

Abstract

This repository is the official implementation of the paper: An AI-assisted Tool For Efficient Prostate Cancer Diagnosis. It uses the data: Digital Pathology Dataset for Prostate Cancer Diagnosis. We developed a multi-lens (or multi-resolution) deep learning pipeline detecting malignant glands in core needle biopsies of low-grade prostate cancer to assist pathologists in diagnosis. The pipeline consisted of two stages: the gland segmentation model detected the glands within the sections and the multi-lens model classified each detected gland into benign vs. malignant. The multi-lens model exploited both morphology information (of nuclei and glands from high resolution images - 40× and 20×) and neighborhood information (for architectural patterns from low resolution images - 10× and 5×), important in prostate gland classification.

This study was funded by the Biomedical Research Council of the Agency for Science, Technology and Research, Singapore.

Keywords

Machine Learning, Deep Learning, Artificial Intelligence, Prostate Cancer, Digital Pathology, Histopathology, Whole Slide Image Analysis, Computational Pathology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 80
    download downloads 9
  • 80
    views
    9
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
80
9
Related to Research communities
Cancer Research