Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Software . 2022
Data sources: Datacite
addClaim

Replication Artifact for TOGA: A Neural Method for Test Oracle Generation

Authors: Elizabeth Dinella, Gabriel Ryan;

Replication Artifact for TOGA: A Neural Method for Test Oracle Generation

Abstract

This repository contains the replication artifact for TOGA: A Neural Method for Test Oracle Generation to appear in ICSE 2022. Testing is widely recognized as an important stage of the softwaredevelopment lifecycle. Effective software testing can provide benefits such as documentation, bug finding, and preventing regressions. In particular, unit tests document a unit���s intended functionality. A test oracle, typically expressed as an condition, documents the intended behavior of the unit under a given test prefix. Synthesizing a functional test oracle is a challenging problem, as it has to capture the intended functionality and not the implemented functionality. In our paper, we propose TOGA (Test Oracle GenerAtion), a unified transformer-based neural approach to infer both exceptional and assertion test oracles based on the context of the focal method. Our artifact reproduces the results for all RQs in the paper's evaluation. The artifact includes source code and download links for datasets and models produced in the paper, fulfilling the requirements for reproduced, resuable, and available badges. We assume basic unix familiarity and ability to run python. Our artifact is given as a docker image for linux. Note: For convenience, we provide a self-contained docker image to reproduce all results without any setup. We recommend using this to reproduce the results in the paper. See directions for using the docker image in the README.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 35
    download downloads 6
  • 35
    views
    6
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
35
6