Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Environment Engineering and Education
Article . 2021 . Peer-reviewed
License: CC BY SA
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2021
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2021
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hal
Article . 2021
License: CC BY SA
Data sources: Hal
versions View all 4 versions
addClaim

Environmental Fate of Toxic Volatile Organics from Oil Spills in the Niger Delta Region, Nigeria

Authors: Amakama, Nimisingha Jacob; Knapp, Charles William; Raimi, Morufu Olalekan; Nimlang, Nanlok Henry;

Environmental Fate of Toxic Volatile Organics from Oil Spills in the Niger Delta Region, Nigeria

Abstract

Over the years, the environmental degradation of ecological resources from crude oil pollution and its human health impacts is receiving more global attention. The utilization of environmental models capable of predicting the fate, transport, and toxicity of chemicals in spilt crude oil can provide essential knowledge required to deal with the complexity associated with the fate of volatile petroleum chemicals in the environment. This paper explores the environmental fate of toxic volatile organics from an oil spill in the Niger Delta Region of Nigeria. Results from the literature implicated sabotage and operational failures from pipelines as primary causes of crude oil spillages. The generation of a fugacity model using EPI Suite™ revealed that Koc values greatly influence the behavior of BTN. Benzene, Toluene, and Naphthalene (BTN) were partitioned into three compartments based on organic-carbon partitioning coefficient (Koc). The organic-carbon partitioning coefficient (Koc) was computed as a function of soil-water distribution coefficient (Kd) and percentage organic matter (%OM). Koc was used to determining the possible risk posed on delicate ecological resources. Aquatic toxicology estimation using Ecological Structural Activity Relationship revealed that all chemicals were not toxic even at over-estimated Koc values. This research established the usefulness of screening level environmental modeling tools in assessing ecological risk and hence helpful in developing site-specific models for monitoring chemicals in the environment, which can assist governments, policymakers, and industries in designing appropriate regional disaster management plans.

Keywords

Niger Delta Region (NDR), Soil-water distribution coefficient (Kd), Benzene, Toluene and Naphthalene (BTN), Soil-water distribution coefficient (Kd)., [SDE.IE] Environmental Sciences/Environmental Engineering, Organic-carbon partitioning coefficient (Koc)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 18
    download downloads 7
  • 18
    views
    7
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
21
Top 10%
Average
Top 10%
18
7
Green
gold