Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Neural Microcircuit Simulation and Analysis Toolkit

Authors: Duarte, Renato; Zajzon, Barna; Morrison, Abigail;

Neural Microcircuit Simulation and Analysis Toolkit

Abstract

NMSAT is a python package that provides a set of tools to build, simulate and analyse neuronal microcircuit models with any degree of complexity, as well as to probe the circuits with arbitrarily complex input stimuli / signals and to analyse the relevant functional aspects of single neuron, population and network dynamics. It provides a high-level wrapper for PyNEST (which is used as the core simulation engine). As such, the complexity of the microcircuits analysed and their building blocks (neuron and synapse models, circuit topology and connectivity, etc.), are determined by the models available in NEST. The use of NEST allows efficient and highly scalable simulations of very large and complex circuits, constrained only by the computational resources available to the user. The modular design allows the user to specify numerical experiments with varying degrees of complexity depending on concrete research objectives. The generality of some of these experiments allows the same types of measurements to be performed on a variety of different circuits, which can be useful for benchmarking and comparison purposes. Additionally, the code was designed to allow an effortless migration across computing systems, i.e. the same simulations can be executed in a local machine, in a computer cluster or a supercomputer, with straightforward resource allocation.

The authors acknowledge the computing time granted by the JARA-HPC Vergabegremium on the supercomputer JURECA at Forschungszentrum Jülich used for testing the software. We acknowledge partial support by the Erasmus Mundus Joint Doctoral Program EuroSPIN, the German Ministry for Education and Research (Bundesministerium für Bildung und Forschung) BMBF Grant 01GQ0420 to BCCN Freiburg, the Helmholtz Alliance on Systems Biology (Germany), the Initiative and Networking Fund of the Helmholtz Association, the Helmholtz Portfolio theme 'Supercomputing and Modeling for the Human Brain'.

Related Organizations
Keywords

Spiking neural networks; Reservoir Computing; Computational Neuroscience

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 31
    download downloads 1
  • 31
    views
    1
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
3
Average
Average
Average
31
1