Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2021
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2021
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2021
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Obfuscation-Resilient Executable Payload Extraction From Packed Malware

Authors: Binlin Cheng; Ming, Jiang; Leal, Erika A; Haotian Zhang; Jianming Fu; Guojun Peng; Jean-Yves Marion;

Obfuscation-Resilient Executable Payload Extraction From Packed Malware

Abstract

Over the past two decades, packed malware is always a veritable challenge to security analysts. Not only is determining the end of the unpacking increasingly difficult, but also advanced packers embed a variety of anti-analysis tricks to impede reverse engineering. As malware's APIs provide rich information about malicious behavior, one common anti-analysis strategy is API obfuscation, which removes the metadata of imported APIs from malware's PE header and complicates API name resolution from API callsites. In this way, even when security analysts obtain the unpacked code, a disassembler still fails to recognize imported API names, and the unpacked code cannot be successfully executed. Recently, generic binary unpacking has made breakthrough progress with noticeable performance improvement. However, reconstructing unpacked code's import tables, which is vital for further malware static/dynamic analyses, has largely been overlooked. Existing approaches are far from mature: they either can be easily evaded by various API obfuscation schemes (e.g., stolen code), or suffer from incomplete API coverage. In this paper, we aim to achieve the ultimate goal of Windows malware unpacking: recovering an executable malware program from the packed and obfuscated binary code. Based on the process memory when the original entry point (OEP) is reached, we develop a hardware-assisted tool, API-Xray, to reconstruct import tables. Import table reconstruction is challenging enough in its own right. Our core technique, API Micro Execution, explores all possible API callsites and executes them without knowing API argument values. At the same time, we take advantage of hardware tracing via Intel Branch Trace Store and NX bit to resolve API names and finally rebuild import tables. Compared with the previous work, API-Xray has a better resistance against various API obfuscation schemes and more coverage on resolved Windows API names. Since July 2019, we have tested API-Xray in practice to assist security professionals in malware analysis: we have successfully rebuilt 155,811 executable malware programs and substantially improved the detection rate for 7,514 unknown or new malware variants.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 8
    download downloads 7
  • 8
    views
    7
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
8
7
Green