Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Presentation . 2021
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Presentation . 2021
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Searching rotational splittings in δ-Scuti stars using pattern finding techniques

Authors: Ramón-Ballesta, Alejandro; García Hernández, Antonio; Suárez, Juan Carlos; Rodón, José Ramón; Pascual-Granado, Javier; Garrido, Rafael;

Searching rotational splittings in δ-Scuti stars using pattern finding techniques

Abstract

Asteroseismology has been able to provide some information on stellar rotation for the Sun, solar-like stars, and compact objects like white dwarfs. However, this study is still rather arduous for intermediate-mass stars, which are moderate-to-rapid rotators. This is so because rotation causes splittings and shiftings in the oscillation modes, thus increasing the complexity of the oscillation spectrum and making it harder to decipher. We present a study of the oscillation patterns of a sample of benchmark $\delta$~Scuti stars that belong to eclipsing binary systems. Our objective was finding the frequency spacing related to the rotational splitting. For this task, we combined three complementary techniques: the Fourier transform, the autocorrelation function, and the histogram of frequency differences. We were able to find the rotational splittings for the majority of the stars, especially when using the last two methods (with both of them showing a similar behaviour). Hence, this is the first time we may clearly state that one of the periodicities present in the p~modes oscillation spectra of $\delta$~Scuti stars corresponds to the rotational splitting. Furthermore, we found that this is true independently of the stellar rotation rate. Additionally, for most of the stars, it was necessary to determine the large separation prior to spot the rotational splitting. These promising results pave the way to find a robust methodology to determine rotational splittings from the oscillation spectra of $\delta$~Scuti stars and, thus, to the understanding of the rotational profile of intermediate-mass pulsating stars.

Keywords

asteroseismology, delta scuti, rotational splitting

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 9
    download downloads 11
  • 9
    views
    11
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
9
11
Green