Downloads provided by UsageCounts
Abstract Stars originate from the dense interstellar medium, which exhibits filamentary structure to scales of ∼1 kpc in galaxies like our Milky Way. We explore quantitatively how much resulting large-scale correlation there is among different stellar clusters and associations in orbit-phase space, characterized here by actions and angles. As a starting point, we identified 55 prominent stellar overdensities in the 6D space of orbit (actions) and orbit-phase (angles) among the ∼2.8 million stars with radial velocities from Gaia EDR3 and with d ≤ 800 pc. We then explored the orbit-phase distribution of all sample stars in the same orbit patch as any one of these 55 overdensities. We find that very commonly numerous other distinct orbit-phase overdensities exist along these same orbits, like pearls on a string. These “pearls” range from known stellar clusters to loose, unrecognized associations. Among orbit patches defined by one initial orbit-phase overdensity, 50% contain at least 8 additional orbit-phase pearls of 10 cataloged members; 20% of them contain 20 additional pearls. This is in contrast to matching orbit patches sampled from a smooth mock catalog, or offset nearby orbit patches, where there are only 2 (or 5, respectively) comparable pearls. Our findings quantify for the first time how common it is for star clusters and associations to form at distinct orbit-phases of nearly the same orbit. This may eventually offer a new way to probe the 6D orbit structure of the filamentary interstellar medium.
Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - Astrophysics of Galaxies
Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - Astrophysics of Galaxies
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 7 | |
| downloads | 7 |

Views provided by UsageCounts
Downloads provided by UsageCounts