Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2021
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2021
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Recovery of TESS Stellar Rotation Periods with Deep Learning

Authors: Claytor, Zachary R; van Saders, Jennifer L; Llama, Joe; Sadowski, Peter; Quach, Brandon; Avallone, Ellis A;

Recovery of TESS Stellar Rotation Periods with Deep Learning

Abstract

TESS is poised to increase the number of stellar rotation period estimates by an order of magnitude, but the mission’s systematics have complicated period searches. While several efforts attempt to solve this problem by removing systematics, standard methods of data reduction have shown limited success. Here I present a method to predict rotation periods from TESS full-frame image light curves using deep learning. This method relies on a training set of simulated light curves convolved with TESS galaxy light curves to emulate the instrumental noise and systematics observed in stellar signals. The simulations include surface differential rotation, spot evolution, and activity level to make the light curves as realistic as possible. Our approach allows the network to learn the difference between rotation signals and TESS systematics. With the added ability to predict uncertainty in the period, we can determine what regions of parameter space the predictions are most credible, producing a reliable set of rotation periods. I present the first set of rotation periods obtained with this method and explore TESS’s insights to stellar structure and evolution through the lens of rotation.

Poster, thumbnail image, and explanatory video for the poster to be presented at TESS Science Conference II. View arXiv preprint at https://arxiv.org/abs/2104.14566. Find butterpy Python package at https://github.com/zclaytor/butterpy.

{"references": ["https://arxiv.org/abs/2104.14566"]}

Keywords

Machine Learning, Stellar Astrophysics, Stellar Rotation, Data Analysis Techniques

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 31
    download downloads 9
  • 31
    views
    9
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
31
9
Green