Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2021
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2021
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

To cool is to keep: residual H/He atmospheres of super-Earths

Authors: Misener, William; Schlichting, Hilke E.;

To cool is to keep: residual H/He atmospheres of super-Earths

Abstract

Super-Earths will constitute a large portion of the small exoplanets well-suited for detailed atmospheric characterization that TESS aims to discover. Current theory predicts these planets accreted large nebular hydrogen/helium envelopes before disk dispersal, which have since been mostly lost through hydrodynamic outflows. The effects of this early evolution on super-Earths’ long-term atmospheric mass, composition, and redox state are largely unexplored, despite potential ramifications for both the habitability and atmospheric observability of this common class of planets. I present the observable outcomes of the atmospheric evolution of super-Earths undergoing core-powered mass loss. Using theoretical models, I demonstrate that loss of the primordial atmosphere can be incomplete, leading to a small residual H/He envelope. The masses of these remnant atmospheres vary by orders of magnitude depending on the planet's mass and the flux received from its host star. Super-Earths finish mass loss with retained atmospheric masses ranging from 10-8 to 10-3 planet masses for typical super-Earth parameters. I discuss how this residual hydrogen affects the composition and enhances potential observational signatures of these atmospheres.

{"references": ["Benneke & Seager 2012, ApJ 753:100", "Berger et al. 2020, AJ 160:108", "Doyle et al. 2019, Science 366:356", "Fortney et al. 2013, ApJ 775:80", "Ginzburg et al. 2016, ApJ 825:29", "Greene et al. 2016, ApJ 817:17", "Gupta & Schlichting 2019, MNRAS 487:24", "Misener & Schlichting 2021, MNRAS 503:5658", "Owen & Wu 2017, ApJ 847:29", "Seager et al. 2020, Nature Astronomy 4:802", "Wordsworth et al. 2018, AJ 155:195"]}

Related Organizations
Keywords

Atmospheres, Exoplanets, Super-Earths

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 24
    download downloads 7
  • 24
    views
    7
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
24
7
Green
Related to Research communities