Downloads provided by UsageCounts
Abstract We present a set of ultramassive white dwarf models, focused on masses above 1.3 M ⊙. Given the uncertainties about the formation and compositions of such objects, we construct parameterized model sequences, guided by evolutionary calculations including both single star and double white dwarf merger formation channels. We demonstrate that the cooling of objects with central densities in excess of 109 g cm−3 is dominated by neutrino cooling via the Urca process in the first ≈100 Myr after formation. Our models indicate that the recently discovered ultramassive white dwarf ZTF J190132.9+145808.7 is likely to have experienced this Urca-dominated cooling regime. We also show that the high densities imply that diffusion is unlikely to significantly alter the core compositions of these objects before they crystallize.
Astrophysics - Solar and Stellar Astrophysics, FOS: Physical sciences, Solar and Stellar Astrophysics (astro-ph.SR)
Astrophysics - Solar and Stellar Astrophysics, FOS: Physical sciences, Solar and Stellar Astrophysics (astro-ph.SR)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 9 | |
| downloads | 3 |

Views provided by UsageCounts
Downloads provided by UsageCounts