Downloads provided by UsageCounts
The application of the full potential of stellar seismology is made difficult by the improper modelling of the upper-most layers of solar-like stars and their influence on the modelled frequencies. Our knowledge of these so-called ‘surface effects’ has improved thanks to the use of 3D hydrodynamical simulations, however, the calculation of eigenfrequencies relies on empirical models for the description of the Lagrangian perturbation of turbulent pressure, namely: the reduced-Γ1 model (RGM) and the gas-Γ1 model (GGM). Starting from the fully compressible turbulence equations, we derived both the GGM and RGM models by using a closure to model the flux of turbulent kinetic energy. We find that both models originate from two terms: the source of turbulent pressure due to compression produced by the oscillations and the divergence of the flux of turbulent pressure. We also demonstrate that they are both compatible with the adiabatic approximation and, additionally, that they imply a number of questionable assumptions, mainly with respect to mode physics. Among other hypotheses, it is necessary to neglect the Lagrangian perturbation of the dissipation of turbulent kinetic energy into heat and the Lagrangian perturbation of buoyancy work. Key words. waves – convection – Sun: oscillations
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 3 | |
| downloads | 4 |

Views provided by UsageCounts
Downloads provided by UsageCounts