Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Preprint . 2021
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Preprint . 2021
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

Generating Pythagorean Triples and Magic Squares: Orders 3 to 31

Authors: Taneja, Inder J.;

Generating Pythagorean Triples and Magic Squares: Orders 3 to 31

Abstract

This paper shows how to create magic squares with a perfect square number for the total sum of their entries. This has been done in two ways: Firstly, by using the sum of consecutive odd numbers, and secondly, by using consecutive natural numbers. In the first case, for all orders of magic squares, one can always obtain a perfect square entries sum. In the second case, magic squares with perfect square magic sums do exist, but only for odd order magic squares. For the even order magic squares, such as, 4, 6, 8, etc. it is not possible to write consecutive natural number magic squares with perfect square entries sums. A simplified idea is introduced to check when it is possible to obtain minimum perfect square entries sums. Also, a uniform method is presented so that, if k is the order of a magic square, then the magic sum of the square is k^3, and the sum of all entries of the magic square is k^4. Based on these aspects, connections with Pythagorean triples are also made. The work is for the magic squares of orders 3 to 31. Further orders shall be dealt later on. In another work, the magic squares are generated based on Pythagorean triples.

Related Organizations
Keywords

Pythagorean Triples, Magic Squares, Block-Wise Magic Squares

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 31
    download downloads 4
  • 31
    views
    4
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
31
4
Green