Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Audiovisual . 2021
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Audiovisual . 2021
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Audiovisual . 2021
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Audiovisual . 2021
License: CC BY
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Underwater surveys of mullet schools (Mugil liza) with Adaptive Resolution Imaging Sonar

Authors: Mauricio Cantor;

Underwater surveys of mullet schools (Mugil liza) with Adaptive Resolution Imaging Sonar

Abstract

This dataset is part of a research project that employs deep learning, with a density-based regression approach, to count fish in low-resolution sonar images (Tarling et al. preprint arXiv DOI: http://arxiv.org/abs/2104.14964). In this repository, we provide data from sonar-based underwater videos of schools of migratory mullets (Mugil liza) recorded at the Tesoura beach (28.495775 S, 48.759996 W), a 100-meter long beach at the inlet canal connecting the Laguna lagoon system to the Atlantic Ocean, in southern Brazil. Since the water transparency at the lagoon canal is very low (from 0.3 to 1.5m visibility; collected in situ with a Secchi disk), mullet schools were recorded by deploying an Adaptive Resolution Imaging Sonar, ARIS 3000 (Sound Metrics Corp, WA, USA), which uses 128 beams to project a wedge-shaped volume of acoustic energy and convert their returning echoes into a digital overhead view of the mullet schools. This dataset contains 500 fully annotated images that were manually marked for the location and abundance of mullet fish, and 126 raw sonar video files, representing over 100k images. The files are organized as follows: 1) "2018-MM-DD_HHMMSS" files are mp4 videos (you may need to add the file extension ".mp4"): There are 126 ARIS files converted into MP4 videos totalling over 789MB of underwater footage captured at 3 frames/seconds. Note that file names indicate the date and time the video was recorded. 2) ".npy" files (in Labelled_data.zip): From the video files, 500 images were selected for labelling. Images (x) were cropped to represent a 4x8.5m2 area and resized to 320 x 576 pixels. Mullet fish were marked with a point annotation. Corresponding ground truth density maps (y) were generated by convolving a Gaussian kernel over the image mask, size =4 and standard deviation = 1. The labelled dataset was randomly split into a holdout partition of 350 training images, 70 validation, and 80 test. 3) ".csv" files: log of frames selected for the labelled subset of data 4) ".h5" file: pre-trained weights for our multi-task with uncertainty regularisation network To advance the development of these machine learning tools, we also make our code openly available (https://github.com/ptarling/DeepLearningFishCounting).

The data sampling was supported by research grants from the National Geographic Society (Discovery Grant WW210R-17) and post-doctoral fellowships from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES Brazil; #88881.170254/2018-01) and Conselho Nacional de Pesquisa e Desenvolvimento Tecnológico (CNPq Brazil; #153797/2016-9). The research on the machine learning tools has been partially supported by the Spanish project PID2019-105093GB-I00 (MINECO/FEDER, UE) and CERCA Programme/Generalitat de Catalunya, and by ICREA under the ICREA Academia programme awarded to Sergio Escalera. Mauricio Cantor is currently supported by The Max Planck Society via the Department for the Ecology of Animal Societies at the Max Planck Institute of Animal Behaviour, and grants from the CAPES-DAAD PROBRAL Research Programme (#23038.002643/2018-01) and the SELA CNPq-PELD Research Program (SELA 445301/2020-1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the dataset.

{"references": ["Tarling P, Cantor M, Clap\u00e9s A, Escalera SG. Deep learning with self-supervision and uncertainty regularization to count fish in underwater images. arXiv: http://arxiv.org/abs/2104.14964"]}

Keywords

sonar camera, fish, mullet, Adaptive Resolution Image Sonar, underwater survey, biological monitoring, fisheries

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 94
    download downloads 635
  • 94
    views
    635
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
94
635