Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other ORP type . 2021
License: CC BY ND
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other ORP type . 2021
License: CC BY ND
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other ORP type . 2021
License: CC BY ND
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Deep Generative Model Challenge for Domain Adaptation in Surgery 2021

Authors: Engelhardt, Sandy; Anirban Mukhopadhyay; Simone, Raffaele De; Sharan, Lalith; Stern, Antonia; Brand, Julian; Krumb, Henry;

Deep Generative Model Challenge for Domain Adaptation in Surgery 2021

Abstract

Mitral regurgitation (MR) is the second most frequent indication for valve surgery in Europe and may occur for organic or functional causes [1]. Mitral valve repair, although considerably more difficult, is prefered over mitral valve replacement, since the native tissue of the valve is preserved. It is a complex on-pump heart surgery, often conducted only by a handful of surgeons in high-volume centers. Minimally invasive procedures, which are performed with endoscopic video recordings, became more and more popular in recent years. However, data availability and data privacy concerns are still an issue for the development of automatic scene analysis algorithms. The AdaptOR challenge aims to address these issues by formulating a domain adaptation problem „from simulation to surgery“: We provide a smaller number of datasets from real surgeries, and a larger number of annotated recordings of training and planning sessions from a physical mitral valve simulator. The goal is to reduce the considerable domain gap between simulation and intraoperative cases, e.g. by incorporating generative models, as in [2,3]. The task associated to the domain adaptation itself is to detect a varying number of 2D landmarks per frame [4] in the target domain. The landmarks are defined by the placement of sutures during mitral annuloplasty (entry and exit points into the tissue), which renders useful for surgical skill assessment and detailed intraoperative documentation. The evaluation metrics of this challenge will be related to how well these points could be identified in unseen intraoperative scenes, therefore it is also possible to only come up with a solution to a landmark detection problem in a single domain. More complex methods, however, would leverage data from both domains and adapt them on input-, output-, and/or feature level. Due to the specific clinical motivation of improving the realism of surgical simulation [2,3], the AdaptOR challenge especially aims to provide a framework for comparison of the performance of different image-to-image translation approaches. Such approaches need to learn how to sucessfully transform the images into an intraoperative appearance, thereby not altering already realistic entities of the image (surgical instruments, sutures, needles etc.). While this can be merely assessed visually, and we will show example results during the workshop, we hypothesize that the success of landmark detection may be an indicator for the quality of the transfer with respect to the consistency of sutures in both domains. References [1] https://www.escardio.org/Journals/E-Journal-of-Cardiology-Practice/Volume-16/Mitral-valve-incompetence-epidemiology-and-causes [2] Engelhardt S., De Simone R., Full P.M., Karck M., Wolf I. (2018) Improving Surgical Training Phantoms by Hyperrealism: Deep Unpaired Image-to-Image Translation from Real Surgeries. In: Frangi A., Schnabel J., Davatzikos C., Alberola-López C., Fichtinger G. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2018. MICCAI 2018. Lecture Notes in Computer Science, vol 11070. Springer, Cham, doi: 10.1007/978-3-030-00928-1_84 [3] Engelhardt, S., Sharan, L., Karck, M., De Simone, R., Wolf, I. (2019), Cross-Domain Conditional Generative Adversarial Networks for Stereoscopic Hyperrealism in Surgical Training. In: Shen D. et al. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science, vol 11768. Springer, Cham, pp 155-163, doi: https://doi.org/10.1007/978-3-030-32254-0_18

Related Organizations
Keywords

Heart Valve, Generative Adversarial Networks, Surgical Simulation, Domain Transfer, Mitral Valve, Endoscopy, Generative Models, Domain Adaptation, Landmark Detection, Surgical Training

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 22
    download downloads 13
  • 22
    views
    13
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
1
Average
Average
Average
22
13