Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2021
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2021
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

The Kepler field as evidence for metallicity-dependent spin evolution

Authors: Amard, L.; Roquette, J.; Matt, S.P.;

The Kepler field as evidence for metallicity-dependent spin evolution

Abstract

The spin-down of main sequence cool stars with time can be used as a tool to provide stellar ages under certain conditions. Large photometric surveys such as Kepler, TESS or even GAIA, thus relies on rotation period measurement to estimate the age of cool main sequence stars. Intriguingly, Davenport & Covey (2018) discovered a sequence of cool slower-than-expected rotators in the HR diagram suggesting a deviation from classical gyrochronology from an unknown source. This year, Amard & Matt (2020) and Claytor et al. (2020) showed that metal-rich stars are likely slower rotators on the main sequence due to being cooler and having thicker convective envelope. Using a compilation of mid-to-high resolution spectroscopic surveys of the Kepler field (LAMOST, APOGEE), we are now able to explore the effect of chemical composition on a population of rotating stars. Combined with Kepler and Gaia observations, and a grid of rotating stellar evolution model over a large range of mass and metallicity, this new sample allows us to reproduce the feature noticed by Davenport & Covey (2018) and to a later extent to explore and constrain the link between chemical composition, mass, rotation and activity.

{"references": ["Amard, Louis et al. (2020) associated to arXiv:2009.11785", "Amard; Louis & Matt, Sean, P. (2020) associated to arXiv:2001.10404", "Amard, Louis et al. (2019) associated to arXiv:1905.08516", "Claytor, Zachary et al. (2020) associated to arXiv:1911.04518", "Davenport, Jim & Covey, Kevin (2018) associated to arXiv:1807.09841", "Reinhold, Timo et al. (2020) associated to arXiv:2005.01401", "Suzuki, Takeru, K. (2018) associated to arXiv:1710.04478v2", "Witzke, Veronika et al. (2020) associated to arXiv:2001.01934v1", "Zhang, Jinghua et al. (2020) associated to arXiv:2005.02717"]}

Related Organizations
Keywords

Stellar Rotation, Cool Stars on the main sequence, Stellar metallicity, Low-mass stars

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 11
    download downloads 15
  • 11
    views
    15
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
11
15
Green
Related to Research communities