Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2021
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2021
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

Helium observations of exoplanet atmospheres are connected to stellar coronal abundances

Authors: Poppenhaeger, Katja;

Helium observations of exoplanet atmospheres are connected to stellar coronal abundances

Abstract

Transit observations in the helium lines near 10830 Angstrom are a new successful tool to study exoplanetary atmospheres and their mass loss. Forming those lines requires ionization and recombination of helium in the exoplanetary atmosphere. This ionization is caused by stellar photons in the extreme UV (EUV); however, no currently active telescopes can observe this part of the stellar spectrum. The stellar spectrum close to the helium ionization threshold consists of individual emission lines, many of which are formed by iron at coronal temperatures. Coronal elemental abundances exhibit distinct patterns related to the first ionization potential (FIP) of those elements, with elements like iron being strongly depleted for high-activity low-mass stars. I show that stars with high versus low coronal iron abundances follow different scaling laws that tie together their X-ray emission and the EUV flux close to the helium ionization threshold. I also show that the currently observed large scatter in the relationship of EUV irradiation with exoplanetary helium transit depths can be reduced by taking coronal iron abundances into account, allowing us to target exoplanets with well-observable helium signatures with much higher confidence.

{"references": ["Wood et al. (2018), The Astrophysical Journal, Volume 862, Issue 1, article id. 66, arXiv:1806.05111", "Oklopcic and Hirata (2018), The Astrophysical Journal Letters, Volume 855, Issue 1, article id. L11, arXiv:1711.05269", "Spake et al. (2018), Nature, Volume 557, Issue 7703, p.68-70, arXiv:1805.01298"]}

Keywords

Cool Stars on the main sequence, Stellar coronae, Stellar EUV emission, Exoplanet atmospheres

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 4
    download downloads 6
  • 4
    views
    6
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
4
6
Green
Related to Research communities