Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Thesis . 2019
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Thesis . 2019
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Erkennung von Informationsverlust in der Modelltransformation

Authors: Praschl, Christoph;

Erkennung von Informationsverlust in der Modelltransformation

Abstract

The model term refers to a simplified representation of objects, processes or other subjects, and is used in the discipline of software engineering to represent an abbreviated realism excerpt. The model transformation extends this area by the transfer of information between several models and is an integral part of modern software development, especially in the field of model-driven software development. This thesis deals with various possibilities for the detection of information loss in the field of model transformation. This is necessary to be able to ensure that information is transferred from a source, to a target model correctly, as well as to detect semantic differences between affected models. In the focus of this essay are the two research questions "Where does a model lose its information when transferring it to another model?" and "Has the semantics of a data set been changed by the transformation?". The first of the two research questions is the preservation of information. According to this, data should not be corrupted and should reach the correct position in the target model, whereas the second problem focuses on the recognition of model characteristics in which the affected models differ. This is about information that exists in the target model but not in the source model. To answer the two questions, fundamentals of modeling as well as theoretical concepts and approaches in the field of model transformation and verification are presented. Furthermore, two graph-based implementations are introduced, which allow the identification of model characteristics affected by information loss. These are, in particular, the approach of a graph-based constraint solver and a method for recognizing node patterns using a Neo4j graph database. In addition, the verification component of the used transformation framework is explained, which enables rudimentary model checks. Finally, the presented practical methods are evaluated using two examples. This evaluation compares the verification methods and results in various advantages and disadvantages, while also demonstrating the basic applicability of the implementations for the detection of information loss.

Keywords

Model Transformation, Model Verification, Neo4j, Graph

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 8
    download downloads 12
  • 8
    views
    12
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
8
12
Green