Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ZENODO
Dataset . 2018
Data sources: Datacite
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ZENODO
Dataset . 2018
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

TCP FIN Flood and Zbassocflood Dataset

Authors: Stiawan, Deris; Wahyudi, Dimas; Heryanto, Ahmad; Septian, Tri Wanda; Wahyudi, Johan; Andika, Riki; Suryani, Meilinda Eka;

TCP FIN Flood and Zbassocflood Dataset

Abstract

The Development of an Internet of Things (IoT) Network Traffic Dataset with Simulated Attack Data. Abstract— This research focuses on the requirements for and the creation of an intrusion detection system (IDS) dataset for an Internet of Things (IoT) network domain. A minimal requirements Internet of Things (IoT) network system was built to produce a dataset according to IDS testing needs for IoT security. Testing was performed with 12 scenarios and resulted in 24 datasets which consisted of normal, attack and combined normal-attack traffic data. Testing focused on three denial of service (DoS) and distributed denial of service (DDoS) attacks—“finish” (FIN) flood, User Datagram Protocol (UDP) flood, and Zbassocflood/association flood—using two communication protocols, IEEE 802.11 (WiFi) and IEEE 802.15.4 (ZigBee). A preprocessing test result obtained 95 attributes for the WiFi datasets and 64 attributes for the Xbee datasets . TCP FIN Flood Attack Pattern Recognition on Internet of Things with Rule Based Signature Analysis Abstract-Focus of this research is TCP FIN flood attack pattern recognition in Internet of Things (IoT) network using rule based signature analysis method. Dataset is taken based on three scenarios normal, attack and normal-attack. The process of identification and recognition of TCP FIN flood attack pattern is done based on observation and analysis of packet attribute from raw data (pcap) using a feature extraction and feature selection method. Further testing was conducted using snort as an IDS. The results of the confusion matrix detection rate evaluation against the snort as IDS show the average percentage of the precision level. Citing Citation data : "TCP FIN Flood Attack Pattern Recognition on Internet of Things with Rule Based Signature Analysis" - https://online-journals.org/index.php/i-joe/article/view/9848 @article{article, author = {Stiawan, Deris and Wahyudi, Dimas and Heryanto, Ahmad and Sahmin, Samsuryadi and Idris, Yazid and Muchtar, Farkhana and Alzahrani, Mohammed and Budiarto, Rahmat}, year = {2019}, month = {04}, pages = {124}, title = {TCP FIN Flood Attack Pattern Recognition on Internet of Things with Rule Based Signature Analysis}, volume = {15}, journal = {International Journal of Online and Biomedical Engineering (iJOE)}, doi = {10.3991/ijoe.v15i07.9848} } Features Extraction on IoT Intrusion Detection System Using Principal Components Analysis (PCA) Feature extraction solves the problem of finding the most efficient and comprehensive set of features. A Principle Component Analysis (PCA) feature extraction algorithm is applied to optimize the effectiveness of feature extraction to build an effective intrusion detection method. This paper uses the Principal Components Analysis (PCA) for features extraction on intrusion detection system with the aim to improve the accuracy and precision of the detection. The impact of features extraction to attack detection was examined. Experiments on a network traffic dataset created from an Internet of Thing (IoT) testbed network topology were conducted and the results show that the accuracy of the detection reaches 100 percent. Citing Citation data : "Features Extraction on IoT Intrusion Detection System Using Principal Components Analysis (PCA)" - https://ieeexplore.ieee.org/document/9251292 @inproceedings{inproceedings, author = {Sharipuddin, and Purnama, Benni and Kurniabudi, Kurniabudi and Winanto, Eko and Stiawan, Deris and Hanapi, Darmawiiovo and Idris, Mohd and Budiarto, Rahmat}, year = {2020}, month = {10}, pages = {114-118}, title = {Features Extraction on IoT Intrusion Detection System Using Principal Components Analysis (PCA)}, doi = {10.23919/EECSI50503.2020.9251292} }

Related Organizations
Keywords

IoT Dataset, Internet of things, zbassofflood dataset

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 37
  • 37
    views
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
0
Average
Average
Average
37