Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2021
License: CC BY NC ND
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2021
License: CC BY NC ND
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Products-6K: A Large-Scale Groceries Product Recognition Dataset

Authors: Georgiadis, Kostas; Giorgos Kordopatis-Zilos; Kalaganis, Fotis P.; Migkotzidis, Panagiotis; Chatzilari, Elisavet; Valasia Panakidou; Pantouvakis, Kyriakos; +4 Authors

Products-6K: A Large-Scale Groceries Product Recognition Dataset

Abstract

Product recognition is a task that receives continuous attention by the computer vision/deep learning community mainly with the scope of providing robust solutions for automatic checkout supermarkets. One of the main challenges is the lack of images that illustrate in realistic conditions a high number of products. Here the product recognition task is perceived slightly differently compared to the automatic checkout paradigm but the challenges encountered are the same. The setting under which this dataset is captured is with the aim to help individuals with visual impairment in doing their daily grocery in order to increase their autonomy. In particular, we propose a large-scale dataset utilized to tackle the product recognition problem in a supermarket environment. The dataset is characterized by (a) large scale in terms of unique products associated with one or more photos from different viewpoints, (b) rich textual descriptions linked to different levels of annotation and, (c) images acquired both in laboratory conditions and in a realistic supermarket scenario portrayed in various clutter and lighting conditions. A direct comparison with existing datasets of this category demonstrates the significantly higher number of the available unique products, as well as the richness of its annotation enabling different recognition scenarios. Finally, the dataset is also benchmarked using various approaches based both on visual and textual descriptors.

Keywords

OCR, Groceries Dataset, Image Retrieval, Product Recognition

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 351
    download downloads 543
  • 351
    views
    543
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
351
543