Downloads provided by UsageCounts
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>The augmented Lagrangian method (ALM) is a classical optimization tool that solves a given “difficult” (constrained) problem via finding solutions of a sequence of “easier” (often unconstrained) sub-problems with respect to the original (primal) variable, wherein constraints satisfaction is controlled via the so-called dual variables. ALM is highly flexible with respect to how primal sub-problems can be solved, giving rise to a plethora of different primal-dual methods. The powerful ALM mechanism has recently proved to be very successful in various large scale and distributed applications. In addition, several significant advances have appeared, primarily on precise complexity results with respect to computational and communication costs in the presence of inexact updates and design and analysis of novel optimal methods for distributed consensus optimization. We provide a tutorial-style introduction to ALM and its variants for solving convex optimization problems in large scale and distributed settings. We describe control-theoretic tools for the algorithms’ analysis and design, survey recent results, and provide novel insights in the context of two emerging applications: federated learning and distributed energy trading.
FOS: Computer and information sciences, Optimization and Control (math.OC), Computer Science - Information Theory, Information Theory (cs.IT), FOS: Mathematics, Mathematics - Optimization and Control
FOS: Computer and information sciences, Optimization and Control (math.OC), Computer Science - Information Theory, Information Theory (cs.IT), FOS: Mathematics, Mathematics - Optimization and Control
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 29 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 5 | |
| downloads | 16 |

Views provided by UsageCounts
Downloads provided by UsageCounts