Views provided by UsageCounts
This folder contains the output of the following simulation: We use the explicit Plasma Simulation Code (PSC, Germaschewski et al.2016) to simulate eight anisotropic counter-propagating Alfvén waves in an ion-electron plasma. The anisotropy of the initial fluctuation is set up according to the theory of critical balance by Sridhar & Goldreich (1994) and Goldreich & Sridhar (1995) at the small scale end of the inertial range: \(k_{\parallel} d_{i} = C (|k_{\perp}|d_{i})^{2/3}\), where \(C= 10^{-4/3}\). The normalization parameters are the speed of light \(c = 1\), the vacuum permittivity \(\epsilon_{0} = 1\), the magnetic permeability \(\mu_{0} = 1\), the Boltzmann constant \(k_{b}=1\), the elementary charge \(q=1\), the ion mass \(m_{i}=1\), the density of ions and electrons \(n_{i}=n_{e}=1\) and the ion inertial length \(d_{i}=c/\omega_{pi}\) where \(\omega_{pi}=\sqrt{n_{i}q^{2}/m_{i}\epsilon_{0}}\) is the ion plasma frequency. We set \(\beta_{s,\parallel}=1\) and \(T_{s,\parallel}/T_{s,\perp}=1\), where \(\beta_{s,\parallel}=2 n_s \mu_{0} k_{B}T_{s,\parallel}/B_{0}^{2}\) is the ratio between the plasma pressure parallel to the background magnetic field \(\mathbf{B}_{0}\) and the magnetic pressure and $T_{s,\parallel}$ is the parallel temperature. The magnetic field is normalised to \(B_{0}=V_{A}/c\), where \(V_{A}=B_{0} / \sqrt{\mu_{0}n_{i}m_{i}}\) is the ion Alfvén speed. We use 100 particles per cell (100 ions and 100 electrons), a mass ratio of \(m_{i}/m_{e} = 100\) so that \(d_e = 0.1 d_{i}\) where \(m_{e}\) is the electron mass and \(d_{e}\) is the electron inertial length. The simulation box size is \(L_{x} \times L_{y} \times L_{z} = 24d_{i}\times24d_{i}\times125d_{i}\) and the spatial resolution is \(\Delta x =\Delta y = \Delta z = 0.06d_{i}\). We use a time step \(\Delta t =0.06/ \omega_{pi}\). In our normalisation, the Debye length \(\lambda_{D}=d_{i}\sqrt{\beta_{i}/2}V_{A}/c\) defines the minimum spatial distance that needs to be resolve in the simulation and \(\lambda_D=0.07d_i\). This output corresponds to \(t=120 \omega_{pi}\). These data were produced using the Data Intensive at Leicester (DIaL) facility provided by the DiRAC project dp126 "Identifying and Quantifying the Role of Magnetic Reconnection in Space Plasma Turbulence".
J.A.A.R. is supported by the European Space Agency's Networking/Partnering Initiative (NPI) programme and the Colombian programme Pasaporte a la Ciencia, Foco Sociedad - Reto 3 (Educación de calidad desde la ciencia, la tecnología y la innovación (CTel)),3933061, ICETEX. D.V. is supported by STFC Ernest Rutherford Fellowship ST/P003826/1. D.V., R.T.W., C.J.O., and G.N. are supported by STFC Consolidated Grant ST/S000240/1. K.G. is supported by NSF grant AGS-1460190. This work was performed using the DiRAC Data Intensive service at Leicester, operated by the University of Leicester IT Services, which forms part of the STFC DiRAC HPC Facility (www.dirac.ac.uk). The equipment was funded by BEIS capital funding via STFC Capital Grants ST/K000373/1 and ST/R002363/1 and STFC DiRAC Operations Grant ST/R001014/1. DiRAC is part of the National e-Infrastructure.
3D PIC, Turbulence, Magnetic Reconnection
3D PIC, Turbulence, Magnetic Reconnection
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 4 |

Views provided by UsageCounts