Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2020
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2020
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2020
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Training dataset: Statistical analysis of a HEK/Ecoli Spike-in DIA dataset using MSstats

Authors: Vogele, Daniel; Stillger, Maren; Fahrner, Matthias; Schilling, Oliver;

Training dataset: Statistical analysis of a HEK/Ecoli Spike-in DIA dataset using MSstats

Abstract

The uploaded files serve as a concise but meaningful training data set in the Galaxy training network (https://galaxyproject.github.io/training-material/). HEK and E.coli cell pellets were lysed with 5 % SDS, 50 mM triethylammonium bicarbonate (TEAB), pH 7.55. The obtained protein extracts were reduced by adding f.c. 5 mM TCEP and alkylated by the addition of f.c. 10 mM iodacetamide. Protein digestion and purification was performed on S-Trap columns. To ensure protein binding to the S-Trap columns, samples were acidified to a final concentration of 1.2 % phosphoric acid (~ pH 2). Six times the sample volume S-Trap buffer (90% aqueous methanol containing a final concentration of 100 mM TEAB, pH 7.1) was added to the samples which were then loaded on the columns and washed with S-Trap buffer. Protein digestion was performed with trypsin and LysC for one hour at 47 °C. Peptides were eluted in three steps with (1) 50 mM TEAB, (2) 0.2 % aqueous formic acid and (3) 50 % acetonitrile containing 0.2 % formic acid. Eluted peptides of HEK and E.coli were mixed in two different ratios and four replicates of each Spike/in ratio were measured and analysed using OpenSwathWorkflow in Galaxy. Results were exported using PyProphet and can be used for the statistical analysis and detection of the two different Spike-in Ratios. The Spike-in ratios were the following: Sample HEK E.coli Spike_in_1 2.5 0.15 Spike_in_2 2.5 0.80 Besides the two PyProphet export files, we uploaded a sample annotation file as well as a comparison matrix file. Additionally, we uploaded the Galaxy MSstats training result files: MSstats_ComparisonResult_export_tabular and MSstats_ComparisonResult_msstats_input.

Keywords

proteomics, DIA, GTN, MSstats, mass spectrometry

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 53
    download downloads 90
  • 53
    views
    90
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
53
90