Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2020
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2020
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dust Dynamics and Implications for Planetesimal Formation in Turbulent Protoplanetary Disks

Authors: Xu, Ziyan;

Dust Dynamics and Implications for Planetesimal Formation in Turbulent Protoplanetary Disks

Abstract

Planetesimal formation from dust grains has long been one of the least understood processes in planet formation. Recent observations of ring-like substructures in protoplanetary disks indicate dust concentration in axisymmetric gas pressure bumps, but it is unclear whether such dust rings can be precursors to planetesimal formation. In laminar environments, planetesimal formation is widely believed to be the outcome of dust clumping by the streaming instability, triggered by the dust feedback to the gas drag force in a background pressure gradient. However, forming planetesimals generally requires super-solar solid abundances, as expected in dust rings, and the streaming instability is unlikely to operate in pressure bumps. In addition, the bulk disk is believed to be weakly turbulent. We conduct 3D non-ideal MHD simulations with Athena code to study dust dynamics in weakly turbulent disks, focusing on the role of dust feedback. We find that in a smooth disk, dust feedback modifies turbulence properties, enhances dust settling, and reduces dust layer thickness. Dust clumping is seen in the simulations, likely related to magnetic zonal flows. Introducing a gas pressure bump in our simulations leads to dust trapping in a ring. Dust feedback further affects turbulence properties and promotes dust trapping by making the dust ring narrower. We find evidence of dust clumping in the ring for near-solar global solid abundance of mm-sized dust. These results suggest that dust rings are preferable locations for planetesimal formation, with implications for the observed ring structures.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 4
    download downloads 7
  • 4
    views
    7
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
4
7
Green
Related to Research communities