Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Thesis . 2020
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other literature type . 2020
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Thesis . 2020
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dualization Of Rhythm Patterns

Authors: Kotowski, Błażej;

Dualization Of Rhythm Patterns

Abstract

This dissertation is a summary of the research on the task of the dualization of rhythm patterns. Rhythm pattern dualization is a transformation of a multi-instrumental rhythm pattern to another pattern composed of maximum two instruments while maintaining coherence and the perceptual essence of the original rhythm. It is a novel task, so comprehensive literature research marrying many disciplines is conducted first. The problem is approached in a multidisciplinary way. Drawing from neurology, cognitive science, and psychology, we assemble solid foundations for tackling the task. We propose two machine learning models built upon the, recently reported by Google Magenta, GrooVAE model for rhythm humanization [34]. The GrooVAE network topology is a combination of Sequence To Sequence Learning and Variational Autoencoder architectures. We treat the task of dualization as a variation of the dimensionality reduction problem. Thus, we intend to achieve the dualized version of rhythm by modifying the network’s architecture in a way, that creates a reduced intermediary representation in the process of autoencoding. We propose two models achieving rhythm compression in different ways. In the first, Autoencoders model, we first reduce the dimensionality of the original GrooVAE network, next we collect hidden state vector values from the first layer of the decoding network. Then, we train a cluster of autoencoders to find a latent, two-dimensional representation of these h-vectors, which we treat as a dualized version of the input pattern. In the second, Bottleneck model, we create a two-dimensional bottleneck layer in between the two original layers of the decoder network. We treat this two-dimensional bottleneck representation as a dualized version of the input pattern. Finally, we evaluate our models with listening experiments and report the results.

Related Organizations
Keywords

rhythm dualization; dimensionality reduction; rhythm analysis; sequence to sequence; autoencoder; LSTM; latent model;

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 550
    download downloads 25
  • 550
    views
    25
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
550
25
Green
Related to Research communities