Downloads provided by UsageCounts
Dataset and code for the paper, 'Recalibrating classifiers for interpretable abusive content detection' by Vidgen et al. (2020) -- to appear at the NLP + CSS workshop at EMNLP 2020. We provide: 1,000 annotated tweets, sampled using the Davidson classifier with 20 0.05 increments (50 from each) from a dataset of tweets directed against MPs in the UK 2017 General Election 1,000 annotated tweets, sampled using the Perspective classifier with 20 0.05 increments (50 from each) from a dataset of tweets directed against MPs in the UK 2017 General Election Code for recalibration in R and STAN. Annotation guidelines for both datasets. Paper abstract We investigate the use of machine learning classifiers for detecting online abuse in empirical research. We show that uncalibrated classifiers (i.e. where the 'raw' scores are used) align poorly with human evaluations. This limits their use to understand the dynamics, patterns and prevalence of online abuse. We examine two widely used classifiers (created by Perspective and Davidson et al.) on a dataset of tweets directed against candidates in the UK's 2017 general election. A Bayesian approach is presented to recalibrate the raw scores from the classifiers, using probabilistic programming and newly annotated data. We argue that interpretability evaluation and recalibration is integral to the application of abusive content classifiers.
MPs, NLP calibration, hate speech, online hate
MPs, NLP calibration, hate speech, online hate
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 24 | |
| downloads | 18 |

Views provided by UsageCounts
Downloads provided by UsageCounts