Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other ORP type . 2020
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other ORP type . 2020
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other ORP type . 2020
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other ORP type . 2020
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other ORP type . 2020
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other ORP type . 2020
License: CC BY
Data sources: Datacite
versions View all 6 versions
addClaim

ESPnet2 pretrained model, kan-bayashi/ljspeech_tts_train_fastspeech2_raw_phn_tacotron_g2p_en_no_space_train.loss.best, fs=22050, lang=en

Authors: Kan-Bayashi;

ESPnet2 pretrained model, kan-bayashi/ljspeech_tts_train_fastspeech2_raw_phn_tacotron_g2p_en_no_space_train.loss.best, fs=22050, lang=en

Abstract

This model was trained by kan-bayashi using ljspeech/tts1 recipe in espnet. Python APISee https://github.com/espnet/espnet_model_zoo Evaluate in the recipegit clone https://github.com/espnet/espnet cd espnet git checkout b4413f6259c49d2543db1e10417c08118a09d990 pip install -e . cd egs2/ljspeech/tts1 # Download the model file here ./run.sh --skip_data_prep false --skip_train true --download_model kan-bayashi/ljspeech_tts_train_fastspeech2_raw_phn_tacotron_g2p_en_no_space_train.loss.best Configconfig: conf/tuning/train_fastspeech2.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/tts_train_fastspeech2_raw_phn_tacotron_g2p_en_no_space ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 1000 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - loss - min - - train - loss - min keep_nbest_models: 5 grad_clip: 1.0 grad_noise: false accum_grad: 8 no_forward_run: false resume: true train_dtype: float32 log_interval: null pretrain_path: [] pretrain_key: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 3000000 valid_batch_bins: null train_shape_file: - exp/tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space/decode_tacotron2_teacher_forcing_train.loss.best/stats/train/text_shape.phn - exp/tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space/decode_tacotron2_teacher_forcing_train.loss.best/stats/train/speech_shape valid_shape_file: - exp/tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space/decode_tacotron2_teacher_forcing_train.loss.best/stats/valid/text_shape.phn - exp/tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space/decode_tacotron2_teacher_forcing_train.loss.best/stats/valid/speech_shape batch_type: numel valid_batch_type: null fold_length: - 150 - 204800 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/tr_no_dev/text - text - text - - exp/tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space/decode_tacotron2_teacher_forcing_train.loss.best/tr_no_dev/durations - durations - text_int - - dump/raw/tr_no_dev/wav.scp - speech - sound - - exp/tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space/decode_tacotron2_teacher_forcing_train.loss.best/stats/train/collect_feats/pitch.scp - pitch - npy - - exp/tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space/decode_tacotron2_teacher_forcing_train.loss.best/stats/train/collect_feats/energy.scp - energy - npy valid_data_path_and_name_and_type: - - dump/raw/dev/text - text - text - - exp/tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space/decode_tacotron2_teacher_forcing_train.loss.best/dev/durations - durations - text_int - - dump/raw/dev/wav.scp - speech - sound - - exp/tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space/decode_tacotron2_teacher_forcing_train.loss.best/stats/valid/collect_feats/pitch.scp - pitch - npy - - exp/tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space/decode_tacotron2_teacher_forcing_train.loss.best/stats/valid/collect_feats/energy.scp - energy - npy allow_variable_data_keys: false max_cache_size: 0.0 valid_max_cache_size: null optim: adam optim_conf: lr: 1.0 scheduler: noamlr scheduler_conf: model_size: 384 warmup_steps: 4000 token_list: - - - .. - OY0 - UH0 - AW0 - '!' - OY2 - '?' - UH2 - ER2 - '''' - AA0 - IY2 - AW2 - AY0 - AH2 - UW2 - AE0 - OW2 - ZH - AO2 - EY0 - OY1 - EH0 - UW0 - AA2 - AY2 - AE2 - IH2 - AO0 - EY2 - OW0 - EH2 - UH1 - TH - AW1 - Y - JH - CH - ER1 - G - NG - SH - OW1 - . - AY1 - EY1 - AO1 - IY0 - UW1 - IY1 - HH - B - AA1 - ',' - F - ER0 - V - AH1 - AE1 - P - W - EH1 - M - IH0 - IH1 - Z - K - DH - L - R - S - D - T - N - AH0 - odim: null model_conf: {} use_preprocessor: true token_type: phn bpemodel: null non_linguistic_symbols: null cleaner: tacotron g2p: g2p_en_no_space feats_extract: fbank feats_extract_conf: fs: 22050 fmin: 80 fmax: 7600 n_mels: 80 hop_length: 256 n_fft: 1024 win_length: null normalize: global_mvn normalize_conf: stats_file: exp/tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space/decode_tacotron2_teacher_forcing_train.loss.best/stats/train/feats_stats.npz tts: fastspeech2 tts_conf: adim: 384 aheads: 2 elayers: 4 eunits: 1536 dlayers: 4 dunits: 1536 positionwise_layer_type: conv1d positionwise_conv_kernel_size: 3 duration_predictor_layers: 2 duration_predictor_chans: 256 duration_predictor_kernel_size: 3 postnet_layers: 5 postnet_filts: 5 postnet_chans: 256 use_masking: true use_scaled_pos_enc: true encoder_normalize_before: false decoder_normalize_before: false reduction_factor: 1 init_type: xavier_uniform init_enc_alpha: 1.0 init_dec_alpha: 1.0 transformer_enc_dropout_rate: 0.2 transformer_enc_positional_dropout_rate: 0.2 transformer_enc_attn_dropout_rate: 0.2 transformer_dec_dropout_rate: 0.2 transformer_dec_positional_dropout_rate: 0.2 transformer_dec_attn_dropout_rate: 0.2 pitch_predictor_layers: 2 pitch_predictor_chans: 256 pitch_predictor_kernel_size: 3 pitch_predictor_dropout: 0.5 pitch_embed_kernel_size: 1 pitch_embed_dropout: 0.0 stop_gradient_from_pitch_predictor: false energy_predictor_layers: 5 energy_predictor_chans: 256 energy_predictor_kernel_size: 5 energy_predictor_dropout: 0.5 energy_embed_kernel_size: 1 energy_embed_dropout: 0.0 stop_gradient_from_energy_predictor: true pitch_extract: dio pitch_extract_conf: fs: 22050 n_fft: 1024 hop_length: 256 f0max: 400 f0min: 80 pitch_normalize: global_mvn pitch_normalize_conf: stats_file: exp/tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space/decode_tacotron2_teacher_forcing_train.loss.best/stats/train/pitch_stats.npz energy_extract: energy energy_extract_conf: fs: 22050 n_fft: 1024 hop_length: 256 win_length: null energy_normalize: global_mvn energy_normalize_conf: stats_file: exp/tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space/decode_tacotron2_teacher_forcing_train.loss.best/stats/train/energy_stats.npz required: - output_dir - token_list distributed: false

Keywords

python, speech-synthesis, pytorch, machine-translation, ESPnet, speech-translation, deep-learning, speech-recognition

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 32
    download downloads 188
  • 32
    views
    188
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
32
188