Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Science of The T...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Science of The Total Environment
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2020
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2020
License: CC BY
Data sources: Datacite
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Science of The Total Environment
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Analysis of engineered nanomaterials (Ag, CeO2 and Fe2O3) in spiked surface waters at environmentally relevant particle concentrations

Authors: Frédéric Loosli; Jingjing Wang; Mithun Sikder; Kamelia Afshinnia; Mohammed Baalousha;

Analysis of engineered nanomaterials (Ag, CeO2 and Fe2O3) in spiked surface waters at environmentally relevant particle concentrations

Abstract

Quantification of engineered nanomaterials (ENMs) concentrations in surface waters remains one of the key challenges in environmental nanoscience and nanotechnology. A promising approach to estimate metal and metal oxide ENM concentrations in complex environmental samples is based on the increase in the elemental ratios of ENM-contaminated samples relative to the corresponding natural background elemental ratios. This contribution evaluated the detection and quantification of Ag, CeO2, and Fe2O3 ENMs spiked in synthetic soft, or in natural river waters using the elemental ratio approach, and evaluated the effect of extractants including sodium hydroxide (NaOH), sodium oxalate (Na2C2O4) and sodium pyrophosphate (Na4P2O7) on the recovery of ENMs from the spiked waters. The extracted ENM concentrations were higher in Na4P2O7-extracted suspensions than in NaOH- and Na2C2O4-extracted suspensions due to the higher efficiency of Na4P2O7 to break up natural and engineered nanomaterial heteroaggregates. The size distributions of the extracted suspensions were determined by asymmetrical flow-field flow fractionation coupled to inductively coupled plasma-mass spectrometer (AF4-ICP-MS). These size distribution analysis demonstrated that Ag ENMs were extracted from the spiked river water as both primary particles and small (<100 nm) aggregates, whereas CeO2 ENMs were extracted from the spiked river water as aggregates of particles in the size range 0-200 nm. The number particle size distribution of the extracted suspensions confirmed that Ag ENMs were extracted as a mixture of primary and aggregated Ag ENMs. Small Ag ENMs (i.e. <20 nm) were detected by AF4-ICP-MS, but these particles were not detected by single particle (sp)-ICP-MS due to high size detection limit of sp-ICP-MS. This study illustrates that the elemental ratio approach is a promising approach to detect and quantify ENMs in surface waters. This study also illustrates the need for a multi-method approach, including extraction, filtration, AF4-ICP-MS and sp-ICP-MS, to detect, quantify, and characterize ENMs in surface waters.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 7
    download downloads 2
  • 7
    views
    2
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
27
Top 10%
Average
Top 10%
7
2
Green
hybrid