Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2018
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2018
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2018
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

GECCO Industrial Challenge 2018 Dataset: A water quality dataset for the 'Internet of Things: Online Anomaly Detection for Drinking Water Quality' competition at the Genetic and Evolutionary Computation Conference 2018, Kyoto, Japan.

Authors: Moritz, Steffen; Rehbach, Frederik; Chandrasekaran, Sowmya; Rebolledo, Margarita; Bartz-Beielstein, Thomas;

GECCO Industrial Challenge 2018 Dataset: A water quality dataset for the 'Internet of Things: Online Anomaly Detection for Drinking Water Quality' competition at the Genetic and Evolutionary Computation Conference 2018, Kyoto, Japan.

Abstract

Dataset of the 'Internet of Things: Online Anomaly Detection for Drinking Water Quality' competition hosted at The Genetic and Evolutionary Computation Conference (GECCO) July 15th-19th 2018, Kyoto, Japan The task of the competition was to develop an anomaly detection algorithm for a water- and environmental data set. Included in zenodo: - dataset of water quality data - additional material and descriptions provided for the competition The competition was organized by: F. Rehbach, M. Rebolledo, S. Moritz, S. Chandrasekaran, T. Bartz-Beielstein (TH Köln) The dataset was provided by: Thüringer Fernwasserversorgung and IMProvT research project GECCO Industrial Challenge: 'Internet of Things: Online Anomaly Detection for Drinking Water Quality' Description: For the 7th time in GECCO history, the SPOTSeven Lab is hosting an industrial challenge in cooperation with various industry partners. This years challenge, based on the 2017 challenge, is held in cooperation with "Thüringer Fernwasserversorgung" which provides their real-world data set. The task of this years competition is to develop an anomaly detection algorithm for the water- and environmental data set. Early identification of anomalies in water quality data is a challenging task. It is important to identify true undesirable variations in the water quality. At the same time, false alarm rates have to be very low. Additionally to the competition, for the first time in GECCO history we are now able to provide the opportunity for all participants to submit 2-page algorithm descriptions for the GECCO Companion. Thus, it is now possible to create publications in a similar procedure to the Late Breaking Abstracts (LBAs) directly through competition participation! Accepted Competition Entry Abstracts - Online Anomaly Detection for Drinking Water Quality Using a Multi-objective Machine Learning Approach (Victor Henrique Alves Ribeiro and Gilberto Reynoso Meza from the Pontifical Catholic University of Parana) - Anomaly Detection for Drinking Water Quality via Deep BiLSTM Ensemble (Xingguo Chen, Fan Feng, Jikai Wu, and Wenyu Liu from the Nanjing University of Posts and Telecommunications and Nanjing University) - Automatic vs. Manual Feature Engineering for Anomaly Detection of Drinking-Water Quality (Valerie Aenne Nicola Fehst from idatase GmbH) Official webpage: http://www.spotseven.de/gecco/gecco-challenge/gecco-challenge-2018/

Keywords

Water Quality, Event Detection, Anomaly Detection, Time Series

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 254
    download downloads 272
  • 254
    views
    272
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
1
Average
Average
Average
254
272