Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other literature type . 2019
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other literature type . 2019
License: CC BY
Data sources: ZENODO
ZENODO
Conference object . 2019
License: CC BY
Data sources: Datacite
ZENODO
Conference object . 2019
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Automatic Lidar and Ceilometer Framework (ALCF)

Authors: Richard Querel; Connor Flynn; Israel Silber; Olaf Morgenstern; Peter Kuma; Adrian McDonald;

Automatic Lidar and Ceilometer Framework (ALCF)

Abstract

Atmospheric lidar measurements are a well-established tool for remote sensing of clouds. For over a decade, spaceborne lidar measurements produced by the CALIOP instrument on the CALIPSO satellite and CATS on the International Space Station have proven invaluable for model cloud evaluation in general circulation and numerical weather forecasting models. They have revealed the vertical structure of clouds, particularly in combination with radar instruments, which is impossible to obtain with passive remote sensing instruments. However, the measurements are limited by rapid attenuation of the lidar signal in thick clouds. Ground-based lidar measurements are becoming more common due to greater availability of instruments such as ceilometers installed on a wide scale globally. They can provide much needed lidar measurements of clouds ”from below”, but processing of lidar data and model evaluation using this data is not well-developed compared to satellite measurements. We present an open source tool called the Automatic Lidar and Ceilometer Framework (ALCF) which implements common lidar processing steps such as resampling, noise removal, cloud detection, calculation of statistics, as well as model—observation intercomparison by bundling the COSP/ACTSIM lidar simulator and allowing it to produce ”curtain” lidar pseudo-measurements from model output of various models (MERRA-2, AMPS, CMIP5) corresponding to ground-based and shipborne instruments (Vaisala CL31, CL51, Lufft CHM 15k, Sigma Space MiniMPL). These pseudo-measurements can be compared in an ”apples to apples” comparison with observations. We hope this tool will enable ground-based lidars to be used more commonly for model evaluation and improvement efforts.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 16
    download downloads 8
  • 16
    views
    8
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
16
8
Green
Funded by
Related to Research communities