Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2020
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2020
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2020
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2020
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2020
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2020
License: CC BY
Data sources: ZENODO
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

CodiEsp corpus: Spanish clinical cases coded in ICD10 (CIE10) - eHealth CLEF2020

Authors: Antonio Miranda; Aitor Gonzalez-Agirre; Martin Krallinger;

CodiEsp corpus: Spanish clinical cases coded in ICD10 (CIE10) - eHealth CLEF2020

Abstract

Introduction These are the train, development, test and background sets of the CodiEsp corpus. Train and development have gold standard annotations. The unannotated background and test sets are distributed together. All documents are released in the context of the CodiEsp track for CLEF ehealth 2020 (http://temu.bsc.es/codiesp/). The CodiEsp corpus contains manually coded clinical cases. All documents are in Spanish language and CIE10 is the coding terminology (it is the Spanish version of ICD10-CM and ICD10-PCS). The CodiEsp corpus has been randomly sampled into three subsets: the train, the development, and the test set. The train set contains 500 clinical cases, and the development and test set 250 clinical cases each. The test set contains 250 clinical cases and it is released together with the background set (with 2751 clinical cases). CodiEsp participants must submit predictions for the test and background set, but they will only be evaluated on the test set. Zip structure Three folders: train, dev and test. Each one of them contains the files for the train, development and test corpora, respectively. train and dev folders have: 3 tab-separated files with the annotation information relevant for each of the 3 sub-tracks of CodiEsp. A subfolder named text_files with the plain text files of the clinical cases. A subfolder named text_files_en with the plain text files machine-translated to English. Due to the translation process, the text files are sentence-splitted. The test folder has only text_files and text_files_en subfolders with the plain text files. Corpus format description The CodiEsp corpus is distributed in plain text in UTF8 encoding, where each clinical case is stored as a single file whose name is the clinical case identifier. Annotations are released in a tab-separated file. Since the CodiEsp track has 3 sub-tracks, every set of documents (train and test) has 3 tab-separated files associated with it. For the sub-tracks CodiEsp-D and CodiEsp-P, the file has the following fields: articleID ICD10-code Tab-separated files for the sub-track CodiEsp-X contain extra fields that provide the text-reference and its position: articleID label ICD10-code text-reference reference-position Corpus summary statistics The final collection of 1000 clinical cases that make up the corpus had a total of 16504 sentences, with an average of 16.5 sentences per clinical case. It contains a total of 396,988 words, with an average of 396.2 words per clinical case. For more information, visit the track webpage: http://temu.bsc.es/codiesp/

{"references": ["Villegas M, de la Pe\u00f1a S, Intxaurrondo A, Santamaria J, Krallinger M. Esfuerzos para fomentar la miner\u00eda de textos en biomedicina m\u00e1s all\u00e1 del ingl\u00e9s: el plan estrat\u00e9gico nacional espa\u00f1ol para las tecnolog\u00edas del lenguaje. Procesamiento del Lenguaje Natural. 2017(59):141-4."]}

Funded by the Plan de Impulso de las Tecnologías del Lenguaje (Plan TL).

Related Organizations
Keywords

ICD10, clinical case, medical Informatics, hierarchical Multi-label Classification, CIE10, text categorization, multi-label Classification, supervised machine learning, NLP, eHealth CLEF, clinical coding, text Mining

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 53
    download downloads 5
  • 53
    views
    5
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
1
Average
Average
Average
53
5
Related to Research communities