Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Software . 2020
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Software . 2020
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Software . 2020
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

A machine learning based software pipeline to pick the variable ordering for algorithms with polynomial inputs

Authors: Florescu Dorian, England Matthew;

A machine learning based software pipeline to pick the variable ordering for algorithms with polynomial inputs

Abstract

This toolbox supports the results in the following publication: D. Florescu and M. England. A machine learning based software pipeline to pick the variable ordering for algorithms with polynomial inputs. The authors are supported by EPSRC Project EP/R019622/1: Embedding Machine Learning within Quantifer Elimination Procedures. The main script is ML_test_rand/pipeline1.py. More details can be found as comments in the script. The sotd heuristic is implemented in the file data_gen_sotd_rand_test.mw. The data is already generated in the repository. The dataset of polynomials can be found in folders entitled poly_rand_dataset (for training) and poly_rand_dataset_test (for testing). The CAD data is generated by running generate_CAD_data.py. The data is already generated in the repository. The CAD routine was run in Maple 2018, with an updated version of the RegularChains Library downloaded in February 2019 from http://www.regularchains.org. The library file is also available in this repository (RegularChains_Updated.mla) This updated library contains bug fixes and additional functionality. The training and evaluation of the machine learning models was done using the scikit-learn package v0.20.2 for Python 2.7. Some data files generated by the pipeline are included in this repository for consistency and for saving time. However, they can be generated again by the user should they wish so: - the predictions with the sotd heuristic (II(d) in the supported paper) - the ML hyperparameters, resulted from 5-fold cross-validation (I(d)i in the supported paper) - the files containing CAD runtimes (in the folders comp_times_rand_dataset and comp_times_rand_dataset_test, corresponding to I(a) and II(e) in the supported paper)

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 77
    download downloads 8
  • 77
    views
    8
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
77
8