Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2019
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2019
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

V-FOR-WaTer – a virtual research environment to access and process environmental data

Authors: Strobl, Marcus; Azmi, Elnaz; Hassler, Sibylle K.; Mälicke, Mirko; Meyer, Jörg; Zehe, Erwin;

V-FOR-WaTer – a virtual research environment to access and process environmental data

Abstract

Thanks to the growth and automation of observational networks and sensors that are more sophisticated, the amount and diversity of data in hydrology is increasing rapidly. These data form the basis for a better understanding of ecological systems and for the development and application of models to describe and forecast changes within these systems. The need of sharing data is widely acknowledged today, though many datasets are still stored on local computers with the corresponding meta information spread over field and lab books. Such data is hardly reusable for other researchers. This makes the collection of data from different sources very time consuming and the necessary additional pre-processing of data enormously slows down the scientific work. In V-FOR-WaTer we develop a web portal to access, scale, and process data, to simplify the gathering of data, speed up the scientific workflow and improve reproducibility of analyses. Our workflow manager facilitates in combination with a detailed documentation the reproducibility of processes and analyses. In addition, we will offer the transfer of data to an established repository, thus encourage publications of data. Today we have a working prototype of the V-FOR-WaTer portal consisting of a customisable metadata model that corresponds to international standards with a focus on hydrological data, a sophisticated data filter, and a toolbox containing basic processes and specialised tools. The portal is being developed in close collaboration between the hydrology group and the computing centre of the Karlsruhe Institute of Technology. This way we maximise performance and usability of the portal, which will create a significant benefit for the environmental science communities.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 3
    download downloads 13
  • 3
    views
    13
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
3
13
Green
Related to Research communities