Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ZENODO
Dataset . 2019
Data sources: Datacite
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ZENODO
Dataset . 2019
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

3D60 (Real Only - All Viewpoints)

Authors: Zioulis, Nikolaos; Karakottas, Antonis; Zarpalas, Dimitrios; Daras, Petros;

3D60 (Real Only - All Viewpoints)

Abstract

Modern 3D vision advancements rely on data driven methods and thus, task specific annotated datasets. Especially for geometric inference tasks like depth and surface estimation, the collection of high quality data is very challenging, expensive and laborious. While considerable efforts have been made for traditional pinhole cameras, the same cannot be said for omnidirectional ones. 3D60 is a collective dataset generated in the context of various 360o vision research works. It comprises multi-modal omnidirectional stereo renders of scenes from realistic and synthetic large-scale 3D datasets (Matterport3D, Stanford2D3D and SunCG). Our dataset fills a very important gap in data-driven spherical 3D vision and, more specifically, for the monocular and stereo dense depth and surface estimation tasks. We originate by exploiting the efforts made in providing synthetic and real scanned 3D datasets of interior spaces and re-using them via ray-tracing in order to generate high quality, densely annotated spherical panoramas.

Instructions, code and data splits available @ https://vcl3d.github.io/3D60/

Keywords

360, Spherical Panorama, Real Data, Omnidirectional Stereo, Indoor Scenes, Scene Understanding, Stereo Vision, Omnidirectional Image, Depth Estimation, Surface Estimation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 97
    download downloads 67
  • 97
    views
    67
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
97
67
Funded by