Views provided by UsageCounts
In this paper, the classification results obtained from several kinds of support vector machines (SVM) and neural networks (NN) are compared with our proposed classifier. Our approach is based on neural networks and interval neutrosophic sets which are used to classify the input patterns into one of the two binary class outputs. The comparison is based on several classical benchmark problems from UCI machine learning repository. We have found that the performance of our approaches are comparable to the existing classifiers. However, our approach has taken into account of the uncertainty in the classification process.
binary classification, interval neutrosophic sets
binary classification, interval neutrosophic sets
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 2 |

Views provided by UsageCounts